Loading…

Enhancing super-resolution in remote sensing: Integrating GIS data with CNN-based SRGAN models for improved image reconstruction

In the field of remote sensing (RS), image super-resolution (SR) techniques play a crucial role across various applications. Traditional SR methods face challenges when applied to long-term coverage datasets with limited spatial resolution. However, recent advancements in deep learning have opened u...

Full description

Saved in:
Bibliographic Details
Published in:E3S web of conferences 2024, Vol.592, p.5006
Main Authors: Sharshov, Ivan, Shoshina, Kseniya, Vasendina, Irina, Aleshko, Roman, Berezovsky, Vladimir
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1576-d568bd63067fceb98726c9e1992256bd3a679059a44c9473ad0cbc28710d10b03
container_end_page
container_issue
container_start_page 5006
container_title E3S web of conferences
container_volume 592
creator Sharshov, Ivan
Shoshina, Kseniya
Vasendina, Irina
Aleshko, Roman
Berezovsky, Vladimir
description In the field of remote sensing (RS), image super-resolution (SR) techniques play a crucial role across various applications. Traditional SR methods face challenges when applied to long-term coverage datasets with limited spatial resolution. However, recent advancements in deep learning have opened up new possibilities for improving the spatial resolution of RS data. While many convolutional neural network (CNN)- based approaches have achieved excellent performance in developing efficient end-to-end SR models for natural images, they have been less frequently applied to satellite image upscaling with high scale factors. This paper introduces a novel CNN block that enhances the performance of SRGAN-based models. Experimental results show that these architectures benefit from additional data, especially when low-resolution images provide insufficient feature information.
doi_str_mv 10.1051/e3sconf/202459205006
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_052579066ae546e392fafaf4acea23c3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_052579066ae546e392fafaf4acea23c3</doaj_id><sourcerecordid>oai_doaj_org_article_052579066ae546e392fafaf4acea23c3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1576-d568bd63067fceb98726c9e1992256bd3a679059a44c9473ad0cbc28710d10b03</originalsourceid><addsrcrecordid>eNpNkd1Kw0AQhYMoKNo38GJfIHb2N13vpNRakApWr8Nkd9KmtNmymyre-eimVqTMxQwzh28OnCy75XDHQfMhyeRCWw8FCKWtAA1gzrIrIUyRc6HE-cl8mQ1SWgMAF3qkQF1l35N2ha1r2iVL-x3FPFIKm33XhJY1LYu0DR2xRG3qJfds1na0jNgd9NPZgnnskH023YqN5_O8wkSeLV6nD3O2DZ42idUhsma7i-GjvzRbXFLP7P2mLu7d4ctNdlHjJtHgr19n74-Tt_FT_vwynY0fnnPHdWFyr82o8kaCKWpHlR0VwjhL3FohtKm8RFNY0BaVclYVEj24yolRwcFzqEBeZ7Mj1wdcl7vYe4lfZcCm_F2EuCwxdo3bUAla6B5mDJJWhqQVNfal0BEK6WTPUkeWiyGlSPU_j0N5CKX8C6U8DUX-ABoPgfE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing super-resolution in remote sensing: Integrating GIS data with CNN-based SRGAN models for improved image reconstruction</title><source>Publicly Available Content Database</source><creator>Sharshov, Ivan ; Shoshina, Kseniya ; Vasendina, Irina ; Aleshko, Roman ; Berezovsky, Vladimir</creator><contributor>Markovich, D. ; Khussainova, Z. ; Onyusheva, I. ; Sembieva, L.</contributor><creatorcontrib>Sharshov, Ivan ; Shoshina, Kseniya ; Vasendina, Irina ; Aleshko, Roman ; Berezovsky, Vladimir ; Markovich, D. ; Khussainova, Z. ; Onyusheva, I. ; Sembieva, L.</creatorcontrib><description>In the field of remote sensing (RS), image super-resolution (SR) techniques play a crucial role across various applications. Traditional SR methods face challenges when applied to long-term coverage datasets with limited spatial resolution. However, recent advancements in deep learning have opened up new possibilities for improving the spatial resolution of RS data. While many convolutional neural network (CNN)- based approaches have achieved excellent performance in developing efficient end-to-end SR models for natural images, they have been less frequently applied to satellite image upscaling with high scale factors. This paper introduces a novel CNN block that enhances the performance of SRGAN-based models. Experimental results show that these architectures benefit from additional data, especially when low-resolution images provide insufficient feature information.</description><identifier>ISSN: 2267-1242</identifier><identifier>EISSN: 2267-1242</identifier><identifier>DOI: 10.1051/e3sconf/202459205006</identifier><language>eng</language><publisher>EDP Sciences</publisher><ispartof>E3S web of conferences, 2024, Vol.592, p.5006</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1576-d568bd63067fceb98726c9e1992256bd3a679059a44c9473ad0cbc28710d10b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Markovich, D.</contributor><contributor>Khussainova, Z.</contributor><contributor>Onyusheva, I.</contributor><contributor>Sembieva, L.</contributor><creatorcontrib>Sharshov, Ivan</creatorcontrib><creatorcontrib>Shoshina, Kseniya</creatorcontrib><creatorcontrib>Vasendina, Irina</creatorcontrib><creatorcontrib>Aleshko, Roman</creatorcontrib><creatorcontrib>Berezovsky, Vladimir</creatorcontrib><title>Enhancing super-resolution in remote sensing: Integrating GIS data with CNN-based SRGAN models for improved image reconstruction</title><title>E3S web of conferences</title><description>In the field of remote sensing (RS), image super-resolution (SR) techniques play a crucial role across various applications. Traditional SR methods face challenges when applied to long-term coverage datasets with limited spatial resolution. However, recent advancements in deep learning have opened up new possibilities for improving the spatial resolution of RS data. While many convolutional neural network (CNN)- based approaches have achieved excellent performance in developing efficient end-to-end SR models for natural images, they have been less frequently applied to satellite image upscaling with high scale factors. This paper introduces a novel CNN block that enhances the performance of SRGAN-based models. Experimental results show that these architectures benefit from additional data, especially when low-resolution images provide insufficient feature information.</description><issn>2267-1242</issn><issn>2267-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkd1Kw0AQhYMoKNo38GJfIHb2N13vpNRakApWr8Nkd9KmtNmymyre-eimVqTMxQwzh28OnCy75XDHQfMhyeRCWw8FCKWtAA1gzrIrIUyRc6HE-cl8mQ1SWgMAF3qkQF1l35N2ha1r2iVL-x3FPFIKm33XhJY1LYu0DR2xRG3qJfds1na0jNgd9NPZgnnskH023YqN5_O8wkSeLV6nD3O2DZ42idUhsma7i-GjvzRbXFLP7P2mLu7d4ctNdlHjJtHgr19n74-Tt_FT_vwynY0fnnPHdWFyr82o8kaCKWpHlR0VwjhL3FohtKm8RFNY0BaVclYVEj24yolRwcFzqEBeZ7Mj1wdcl7vYe4lfZcCm_F2EuCwxdo3bUAla6B5mDJJWhqQVNfal0BEK6WTPUkeWiyGlSPU_j0N5CKX8C6U8DUX-ABoPgfE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Sharshov, Ivan</creator><creator>Shoshina, Kseniya</creator><creator>Vasendina, Irina</creator><creator>Aleshko, Roman</creator><creator>Berezovsky, Vladimir</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2024</creationdate><title>Enhancing super-resolution in remote sensing: Integrating GIS data with CNN-based SRGAN models for improved image reconstruction</title><author>Sharshov, Ivan ; Shoshina, Kseniya ; Vasendina, Irina ; Aleshko, Roman ; Berezovsky, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1576-d568bd63067fceb98726c9e1992256bd3a679059a44c9473ad0cbc28710d10b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharshov, Ivan</creatorcontrib><creatorcontrib>Shoshina, Kseniya</creatorcontrib><creatorcontrib>Vasendina, Irina</creatorcontrib><creatorcontrib>Aleshko, Roman</creatorcontrib><creatorcontrib>Berezovsky, Vladimir</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>E3S web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharshov, Ivan</au><au>Shoshina, Kseniya</au><au>Vasendina, Irina</au><au>Aleshko, Roman</au><au>Berezovsky, Vladimir</au><au>Markovich, D.</au><au>Khussainova, Z.</au><au>Onyusheva, I.</au><au>Sembieva, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing super-resolution in remote sensing: Integrating GIS data with CNN-based SRGAN models for improved image reconstruction</atitle><jtitle>E3S web of conferences</jtitle><date>2024</date><risdate>2024</risdate><volume>592</volume><spage>5006</spage><pages>5006-</pages><issn>2267-1242</issn><eissn>2267-1242</eissn><abstract>In the field of remote sensing (RS), image super-resolution (SR) techniques play a crucial role across various applications. Traditional SR methods face challenges when applied to long-term coverage datasets with limited spatial resolution. However, recent advancements in deep learning have opened up new possibilities for improving the spatial resolution of RS data. While many convolutional neural network (CNN)- based approaches have achieved excellent performance in developing efficient end-to-end SR models for natural images, they have been less frequently applied to satellite image upscaling with high scale factors. This paper introduces a novel CNN block that enhances the performance of SRGAN-based models. Experimental results show that these architectures benefit from additional data, especially when low-resolution images provide insufficient feature information.</abstract><pub>EDP Sciences</pub><doi>10.1051/e3sconf/202459205006</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2267-1242
ispartof E3S web of conferences, 2024, Vol.592, p.5006
issn 2267-1242
2267-1242
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_052579066ae546e392fafaf4acea23c3
source Publicly Available Content Database
title Enhancing super-resolution in remote sensing: Integrating GIS data with CNN-based SRGAN models for improved image reconstruction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20super-resolution%20in%20remote%20sensing:%20Integrating%20GIS%20data%20with%20CNN-based%20SRGAN%20models%20for%20improved%20image%20reconstruction&rft.jtitle=E3S%20web%20of%20conferences&rft.au=Sharshov,%20Ivan&rft.date=2024&rft.volume=592&rft.spage=5006&rft.pages=5006-&rft.issn=2267-1242&rft.eissn=2267-1242&rft_id=info:doi/10.1051/e3sconf/202459205006&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_052579066ae546e392fafaf4acea23c3%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1576-d568bd63067fceb98726c9e1992256bd3a679059a44c9473ad0cbc28710d10b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true