Loading…
Enhancing super-resolution in remote sensing: Integrating GIS data with CNN-based SRGAN models for improved image reconstruction
In the field of remote sensing (RS), image super-resolution (SR) techniques play a crucial role across various applications. Traditional SR methods face challenges when applied to long-term coverage datasets with limited spatial resolution. However, recent advancements in deep learning have opened u...
Saved in:
Published in: | E3S web of conferences 2024, Vol.592, p.5006 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1576-d568bd63067fceb98726c9e1992256bd3a679059a44c9473ad0cbc28710d10b03 |
container_end_page | |
container_issue | |
container_start_page | 5006 |
container_title | E3S web of conferences |
container_volume | 592 |
creator | Sharshov, Ivan Shoshina, Kseniya Vasendina, Irina Aleshko, Roman Berezovsky, Vladimir |
description | In the field of remote sensing (RS), image super-resolution (SR) techniques play a crucial role across various applications. Traditional SR methods face challenges when applied to long-term coverage datasets with limited spatial resolution. However, recent advancements in deep learning have opened up new possibilities for improving the spatial resolution of RS data. While many convolutional neural network (CNN)- based approaches have achieved excellent performance in developing efficient end-to-end SR models for natural images, they have been less frequently applied to satellite image upscaling with high scale factors. This paper introduces a novel CNN block that enhances the performance of SRGAN-based models. Experimental results show that these architectures benefit from additional data, especially when low-resolution images provide insufficient feature information. |
doi_str_mv | 10.1051/e3sconf/202459205006 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_052579066ae546e392fafaf4acea23c3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_052579066ae546e392fafaf4acea23c3</doaj_id><sourcerecordid>oai_doaj_org_article_052579066ae546e392fafaf4acea23c3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1576-d568bd63067fceb98726c9e1992256bd3a679059a44c9473ad0cbc28710d10b03</originalsourceid><addsrcrecordid>eNpNkd1Kw0AQhYMoKNo38GJfIHb2N13vpNRakApWr8Nkd9KmtNmymyre-eimVqTMxQwzh28OnCy75XDHQfMhyeRCWw8FCKWtAA1gzrIrIUyRc6HE-cl8mQ1SWgMAF3qkQF1l35N2ha1r2iVL-x3FPFIKm33XhJY1LYu0DR2xRG3qJfds1na0jNgd9NPZgnnskH023YqN5_O8wkSeLV6nD3O2DZ42idUhsma7i-GjvzRbXFLP7P2mLu7d4ctNdlHjJtHgr19n74-Tt_FT_vwynY0fnnPHdWFyr82o8kaCKWpHlR0VwjhL3FohtKm8RFNY0BaVclYVEj24yolRwcFzqEBeZ7Mj1wdcl7vYe4lfZcCm_F2EuCwxdo3bUAla6B5mDJJWhqQVNfal0BEK6WTPUkeWiyGlSPU_j0N5CKX8C6U8DUX-ABoPgfE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing super-resolution in remote sensing: Integrating GIS data with CNN-based SRGAN models for improved image reconstruction</title><source>Publicly Available Content Database</source><creator>Sharshov, Ivan ; Shoshina, Kseniya ; Vasendina, Irina ; Aleshko, Roman ; Berezovsky, Vladimir</creator><contributor>Markovich, D. ; Khussainova, Z. ; Onyusheva, I. ; Sembieva, L.</contributor><creatorcontrib>Sharshov, Ivan ; Shoshina, Kseniya ; Vasendina, Irina ; Aleshko, Roman ; Berezovsky, Vladimir ; Markovich, D. ; Khussainova, Z. ; Onyusheva, I. ; Sembieva, L.</creatorcontrib><description>In the field of remote sensing (RS), image super-resolution (SR) techniques play a crucial role across various applications. Traditional SR methods face challenges when applied to long-term coverage datasets with limited spatial resolution. However, recent advancements in deep learning have opened up new possibilities for improving the spatial resolution of RS data. While many convolutional neural network (CNN)- based approaches have achieved excellent performance in developing efficient end-to-end SR models for natural images, they have been less frequently applied to satellite image upscaling with high scale factors. This paper introduces a novel CNN block that enhances the performance of SRGAN-based models. Experimental results show that these architectures benefit from additional data, especially when low-resolution images provide insufficient feature information.</description><identifier>ISSN: 2267-1242</identifier><identifier>EISSN: 2267-1242</identifier><identifier>DOI: 10.1051/e3sconf/202459205006</identifier><language>eng</language><publisher>EDP Sciences</publisher><ispartof>E3S web of conferences, 2024, Vol.592, p.5006</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1576-d568bd63067fceb98726c9e1992256bd3a679059a44c9473ad0cbc28710d10b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Markovich, D.</contributor><contributor>Khussainova, Z.</contributor><contributor>Onyusheva, I.</contributor><contributor>Sembieva, L.</contributor><creatorcontrib>Sharshov, Ivan</creatorcontrib><creatorcontrib>Shoshina, Kseniya</creatorcontrib><creatorcontrib>Vasendina, Irina</creatorcontrib><creatorcontrib>Aleshko, Roman</creatorcontrib><creatorcontrib>Berezovsky, Vladimir</creatorcontrib><title>Enhancing super-resolution in remote sensing: Integrating GIS data with CNN-based SRGAN models for improved image reconstruction</title><title>E3S web of conferences</title><description>In the field of remote sensing (RS), image super-resolution (SR) techniques play a crucial role across various applications. Traditional SR methods face challenges when applied to long-term coverage datasets with limited spatial resolution. However, recent advancements in deep learning have opened up new possibilities for improving the spatial resolution of RS data. While many convolutional neural network (CNN)- based approaches have achieved excellent performance in developing efficient end-to-end SR models for natural images, they have been less frequently applied to satellite image upscaling with high scale factors. This paper introduces a novel CNN block that enhances the performance of SRGAN-based models. Experimental results show that these architectures benefit from additional data, especially when low-resolution images provide insufficient feature information.</description><issn>2267-1242</issn><issn>2267-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkd1Kw0AQhYMoKNo38GJfIHb2N13vpNRakApWr8Nkd9KmtNmymyre-eimVqTMxQwzh28OnCy75XDHQfMhyeRCWw8FCKWtAA1gzrIrIUyRc6HE-cl8mQ1SWgMAF3qkQF1l35N2ha1r2iVL-x3FPFIKm33XhJY1LYu0DR2xRG3qJfds1na0jNgd9NPZgnnskH023YqN5_O8wkSeLV6nD3O2DZ42idUhsma7i-GjvzRbXFLP7P2mLu7d4ctNdlHjJtHgr19n74-Tt_FT_vwynY0fnnPHdWFyr82o8kaCKWpHlR0VwjhL3FohtKm8RFNY0BaVclYVEj24yolRwcFzqEBeZ7Mj1wdcl7vYe4lfZcCm_F2EuCwxdo3bUAla6B5mDJJWhqQVNfal0BEK6WTPUkeWiyGlSPU_j0N5CKX8C6U8DUX-ABoPgfE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Sharshov, Ivan</creator><creator>Shoshina, Kseniya</creator><creator>Vasendina, Irina</creator><creator>Aleshko, Roman</creator><creator>Berezovsky, Vladimir</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2024</creationdate><title>Enhancing super-resolution in remote sensing: Integrating GIS data with CNN-based SRGAN models for improved image reconstruction</title><author>Sharshov, Ivan ; Shoshina, Kseniya ; Vasendina, Irina ; Aleshko, Roman ; Berezovsky, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1576-d568bd63067fceb98726c9e1992256bd3a679059a44c9473ad0cbc28710d10b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharshov, Ivan</creatorcontrib><creatorcontrib>Shoshina, Kseniya</creatorcontrib><creatorcontrib>Vasendina, Irina</creatorcontrib><creatorcontrib>Aleshko, Roman</creatorcontrib><creatorcontrib>Berezovsky, Vladimir</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>E3S web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharshov, Ivan</au><au>Shoshina, Kseniya</au><au>Vasendina, Irina</au><au>Aleshko, Roman</au><au>Berezovsky, Vladimir</au><au>Markovich, D.</au><au>Khussainova, Z.</au><au>Onyusheva, I.</au><au>Sembieva, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing super-resolution in remote sensing: Integrating GIS data with CNN-based SRGAN models for improved image reconstruction</atitle><jtitle>E3S web of conferences</jtitle><date>2024</date><risdate>2024</risdate><volume>592</volume><spage>5006</spage><pages>5006-</pages><issn>2267-1242</issn><eissn>2267-1242</eissn><abstract>In the field of remote sensing (RS), image super-resolution (SR) techniques play a crucial role across various applications. Traditional SR methods face challenges when applied to long-term coverage datasets with limited spatial resolution. However, recent advancements in deep learning have opened up new possibilities for improving the spatial resolution of RS data. While many convolutional neural network (CNN)- based approaches have achieved excellent performance in developing efficient end-to-end SR models for natural images, they have been less frequently applied to satellite image upscaling with high scale factors. This paper introduces a novel CNN block that enhances the performance of SRGAN-based models. Experimental results show that these architectures benefit from additional data, especially when low-resolution images provide insufficient feature information.</abstract><pub>EDP Sciences</pub><doi>10.1051/e3sconf/202459205006</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2267-1242 |
ispartof | E3S web of conferences, 2024, Vol.592, p.5006 |
issn | 2267-1242 2267-1242 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_052579066ae546e392fafaf4acea23c3 |
source | Publicly Available Content Database |
title | Enhancing super-resolution in remote sensing: Integrating GIS data with CNN-based SRGAN models for improved image reconstruction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20super-resolution%20in%20remote%20sensing:%20Integrating%20GIS%20data%20with%20CNN-based%20SRGAN%20models%20for%20improved%20image%20reconstruction&rft.jtitle=E3S%20web%20of%20conferences&rft.au=Sharshov,%20Ivan&rft.date=2024&rft.volume=592&rft.spage=5006&rft.pages=5006-&rft.issn=2267-1242&rft.eissn=2267-1242&rft_id=info:doi/10.1051/e3sconf/202459205006&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_052579066ae546e392fafaf4acea23c3%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1576-d568bd63067fceb98726c9e1992256bd3a679059a44c9473ad0cbc28710d10b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |