Loading…
Inorganic Polyphosphate: Coacervate Formation and Functional Significance in Nanomedical Applications
Inorganic polyphosphates (polyP) are long-chain polymers of orthophosphate residues, which, depending on the external conditions, can be present both physiologically and synthetically in either soluble, nanoparticulate or coacervate form. In recent years, these polymers have received increasing atte...
Saved in:
Published in: | International journal of nanomedicine 2022-01, Vol.17, p.5825-5850 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c542t-3b41d4a665101cd20bb37bf53b970730a4584707f421979351c830b368a3789d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c542t-3b41d4a665101cd20bb37bf53b970730a4584707f421979351c830b368a3789d3 |
container_end_page | 5850 |
container_issue | |
container_start_page | 5825 |
container_title | International journal of nanomedicine |
container_volume | 17 |
creator | Schröder, Heinz C Neufurth, Meik Zhou, Huan Wang, Shunfeng Wang, Xiaohong Müller, Werner E G |
description | Inorganic polyphosphates (polyP) are long-chain polymers of orthophosphate residues, which, depending on the external conditions, can be present both physiologically and synthetically in either soluble, nanoparticulate or coacervate form. In recent years, these polymers have received increasing attention due to their unprecedented ability to exhibit both morphogenetic and metabolic energy delivering properties. There are no other physiological molecules that contain as many metabolically utilizable, high-energy bonds as polyP, making these polymers of particular medical interest as components of advanced hydrogel scaffold materials for potential applications in ATP-dependent tissue regeneration and repair. However, these polymers show physiological activity only in soluble form and in the coacervate phase, but not as stable metal-polyP nanoparticles. Therefore, understanding the mechanisms of formation of polyP coacervates and nanoparticles as well as their transformations is important for the design of novel materials for tissue implants, wound healing, and drug delivery and is discussed here. |
doi_str_mv | 10.2147/IJN.S389819 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0528ed18106d4b8b92c3349ee5300236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A734602857</galeid><doaj_id>oai_doaj_org_article_0528ed18106d4b8b92c3349ee5300236</doaj_id><sourcerecordid>A734602857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-3b41d4a665101cd20bb37bf53b970730a4584707f421979351c830b368a3789d3</originalsourceid><addsrcrecordid>eNptktGLEzEQxhdRvPP0yXdZ8EWQ1iSTbBIfhFKsVo5TOH0O2Wy2TdlN9pLdg_vvTa_1vIrkIZPJb77kG6YoXmM0J5jyD-tvV_NrEFJg-aQ4x5iLGUEYnj6Kz4oXKe0QYlxU8nlxBhXllJHqvLBrH-JGe2fKH6G7G7YhDVs92o_lMmhj422Oy1WIvR5d8KX2TbmavNkfdFdeu413rTPaG1s6X15pH3rb5ERXLoahy8GeTC-LZ63ukn113C-KX6vPP5dfZ5ffv6yXi8uZYZSMM6gpbqiuKoYRNg1BdQ28bhnUkiMOSFMmaI5aSrDkEhg2AlANldDAhWzgolgfdJugd2qIrtfxTgXt1H0iO1U6js50ViFGhG2wwKhqaC1qSQwAldYyQIhAlbU-HbSGqc6ejPVj1N2J6OmNd1u1CbdK8vw5xLLAu6NADDeTTaPqXTK267S3YUqKcAZEoopDRt_-g-7CFHOH7ymGs2sh_1IbnQ0434b8rtmLqgUHWiEiGM_U_D9UXo3tnQneti7nTwreHwpMDClF2z54xEjtJ0zlCVPHCcv0m8dteWD_jBT8Br9iyQk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755184789</pqid></control><display><type>article</type><title>Inorganic Polyphosphate: Coacervate Formation and Functional Significance in Nanomedical Applications</title><source>Publicly Available Content (ProQuest)</source><source>Taylor & Francis Open Access Journals</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Schröder, Heinz C ; Neufurth, Meik ; Zhou, Huan ; Wang, Shunfeng ; Wang, Xiaohong ; Müller, Werner E G</creator><creatorcontrib>Schröder, Heinz C ; Neufurth, Meik ; Zhou, Huan ; Wang, Shunfeng ; Wang, Xiaohong ; Müller, Werner E G</creatorcontrib><description>Inorganic polyphosphates (polyP) are long-chain polymers of orthophosphate residues, which, depending on the external conditions, can be present both physiologically and synthetically in either soluble, nanoparticulate or coacervate form. In recent years, these polymers have received increasing attention due to their unprecedented ability to exhibit both morphogenetic and metabolic energy delivering properties. There are no other physiological molecules that contain as many metabolically utilizable, high-energy bonds as polyP, making these polymers of particular medical interest as components of advanced hydrogel scaffold materials for potential applications in ATP-dependent tissue regeneration and repair. However, these polymers show physiological activity only in soluble form and in the coacervate phase, but not as stable metal-polyP nanoparticles. Therefore, understanding the mechanisms of formation of polyP coacervates and nanoparticles as well as their transformations is important for the design of novel materials for tissue implants, wound healing, and drug delivery and is discussed here.</description><identifier>ISSN: 1178-2013</identifier><identifier>ISSN: 1176-9114</identifier><identifier>EISSN: 1178-2013</identifier><identifier>DOI: 10.2147/IJN.S389819</identifier><identifier>PMID: 36474526</identifier><language>eng</language><publisher>New Zealand: Dove Medical Press Limited</publisher><subject>Aqueous solutions ; Biological products ; biomaterial ; Drug delivery systems ; Drugs ; Energy ; Hydrogels ; metabolic energy ; Metabolism ; morphogenetic activity ; Oxygen ; phase separation ; Polymers ; polyphosphate nanoparticles ; Proteins ; Review ; Solvents ; Technology application ; Tissue engineering ; tissue regeneration ; Vehicles</subject><ispartof>International journal of nanomedicine, 2022-01, Vol.17, p.5825-5850</ispartof><rights>2022 Schröder et al.</rights><rights>COPYRIGHT 2022 Dove Medical Press Limited</rights><rights>2022. This work is licensed under https:https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 Schröder et al. 2022 Schröder et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-3b41d4a665101cd20bb37bf53b970730a4584707f421979351c830b368a3789d3</citedby><cites>FETCH-LOGICAL-c542t-3b41d4a665101cd20bb37bf53b970730a4584707f421979351c830b368a3789d3</cites><orcidid>0000-0002-8223-3689 ; 0000-0003-1796-6314 ; 0000-0002-2383-6412 ; 0000-0003-0992-6427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2755184789/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2755184789?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74284,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36474526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schröder, Heinz C</creatorcontrib><creatorcontrib>Neufurth, Meik</creatorcontrib><creatorcontrib>Zhou, Huan</creatorcontrib><creatorcontrib>Wang, Shunfeng</creatorcontrib><creatorcontrib>Wang, Xiaohong</creatorcontrib><creatorcontrib>Müller, Werner E G</creatorcontrib><title>Inorganic Polyphosphate: Coacervate Formation and Functional Significance in Nanomedical Applications</title><title>International journal of nanomedicine</title><addtitle>Int J Nanomedicine</addtitle><description>Inorganic polyphosphates (polyP) are long-chain polymers of orthophosphate residues, which, depending on the external conditions, can be present both physiologically and synthetically in either soluble, nanoparticulate or coacervate form. In recent years, these polymers have received increasing attention due to their unprecedented ability to exhibit both morphogenetic and metabolic energy delivering properties. There are no other physiological molecules that contain as many metabolically utilizable, high-energy bonds as polyP, making these polymers of particular medical interest as components of advanced hydrogel scaffold materials for potential applications in ATP-dependent tissue regeneration and repair. However, these polymers show physiological activity only in soluble form and in the coacervate phase, but not as stable metal-polyP nanoparticles. Therefore, understanding the mechanisms of formation of polyP coacervates and nanoparticles as well as their transformations is important for the design of novel materials for tissue implants, wound healing, and drug delivery and is discussed here.</description><subject>Aqueous solutions</subject><subject>Biological products</subject><subject>biomaterial</subject><subject>Drug delivery systems</subject><subject>Drugs</subject><subject>Energy</subject><subject>Hydrogels</subject><subject>metabolic energy</subject><subject>Metabolism</subject><subject>morphogenetic activity</subject><subject>Oxygen</subject><subject>phase separation</subject><subject>Polymers</subject><subject>polyphosphate nanoparticles</subject><subject>Proteins</subject><subject>Review</subject><subject>Solvents</subject><subject>Technology application</subject><subject>Tissue engineering</subject><subject>tissue regeneration</subject><subject>Vehicles</subject><issn>1178-2013</issn><issn>1176-9114</issn><issn>1178-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNptktGLEzEQxhdRvPP0yXdZ8EWQ1iSTbBIfhFKsVo5TOH0O2Wy2TdlN9pLdg_vvTa_1vIrkIZPJb77kG6YoXmM0J5jyD-tvV_NrEFJg-aQ4x5iLGUEYnj6Kz4oXKe0QYlxU8nlxBhXllJHqvLBrH-JGe2fKH6G7G7YhDVs92o_lMmhj422Oy1WIvR5d8KX2TbmavNkfdFdeu413rTPaG1s6X15pH3rb5ERXLoahy8GeTC-LZ63ukn113C-KX6vPP5dfZ5ffv6yXi8uZYZSMM6gpbqiuKoYRNg1BdQ28bhnUkiMOSFMmaI5aSrDkEhg2AlANldDAhWzgolgfdJugd2qIrtfxTgXt1H0iO1U6js50ViFGhG2wwKhqaC1qSQwAldYyQIhAlbU-HbSGqc6ejPVj1N2J6OmNd1u1CbdK8vw5xLLAu6NADDeTTaPqXTK267S3YUqKcAZEoopDRt_-g-7CFHOH7ymGs2sh_1IbnQ0434b8rtmLqgUHWiEiGM_U_D9UXo3tnQneti7nTwreHwpMDClF2z54xEjtJ0zlCVPHCcv0m8dteWD_jBT8Br9iyQk</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Schröder, Heinz C</creator><creator>Neufurth, Meik</creator><creator>Zhou, Huan</creator><creator>Wang, Shunfeng</creator><creator>Wang, Xiaohong</creator><creator>Müller, Werner E G</creator><general>Dove Medical Press Limited</general><general>Taylor & Francis Ltd</general><general>Dove</general><general>Dove Medical Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8223-3689</orcidid><orcidid>https://orcid.org/0000-0003-1796-6314</orcidid><orcidid>https://orcid.org/0000-0002-2383-6412</orcidid><orcidid>https://orcid.org/0000-0003-0992-6427</orcidid></search><sort><creationdate>20220101</creationdate><title>Inorganic Polyphosphate: Coacervate Formation and Functional Significance in Nanomedical Applications</title><author>Schröder, Heinz C ; Neufurth, Meik ; Zhou, Huan ; Wang, Shunfeng ; Wang, Xiaohong ; Müller, Werner E G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-3b41d4a665101cd20bb37bf53b970730a4584707f421979351c830b368a3789d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aqueous solutions</topic><topic>Biological products</topic><topic>biomaterial</topic><topic>Drug delivery systems</topic><topic>Drugs</topic><topic>Energy</topic><topic>Hydrogels</topic><topic>metabolic energy</topic><topic>Metabolism</topic><topic>morphogenetic activity</topic><topic>Oxygen</topic><topic>phase separation</topic><topic>Polymers</topic><topic>polyphosphate nanoparticles</topic><topic>Proteins</topic><topic>Review</topic><topic>Solvents</topic><topic>Technology application</topic><topic>Tissue engineering</topic><topic>tissue regeneration</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schröder, Heinz C</creatorcontrib><creatorcontrib>Neufurth, Meik</creatorcontrib><creatorcontrib>Zhou, Huan</creatorcontrib><creatorcontrib>Wang, Shunfeng</creatorcontrib><creatorcontrib>Wang, Xiaohong</creatorcontrib><creatorcontrib>Müller, Werner E G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Health & Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of nanomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schröder, Heinz C</au><au>Neufurth, Meik</au><au>Zhou, Huan</au><au>Wang, Shunfeng</au><au>Wang, Xiaohong</au><au>Müller, Werner E G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inorganic Polyphosphate: Coacervate Formation and Functional Significance in Nanomedical Applications</atitle><jtitle>International journal of nanomedicine</jtitle><addtitle>Int J Nanomedicine</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>17</volume><spage>5825</spage><epage>5850</epage><pages>5825-5850</pages><issn>1178-2013</issn><issn>1176-9114</issn><eissn>1178-2013</eissn><abstract>Inorganic polyphosphates (polyP) are long-chain polymers of orthophosphate residues, which, depending on the external conditions, can be present both physiologically and synthetically in either soluble, nanoparticulate or coacervate form. In recent years, these polymers have received increasing attention due to their unprecedented ability to exhibit both morphogenetic and metabolic energy delivering properties. There are no other physiological molecules that contain as many metabolically utilizable, high-energy bonds as polyP, making these polymers of particular medical interest as components of advanced hydrogel scaffold materials for potential applications in ATP-dependent tissue regeneration and repair. However, these polymers show physiological activity only in soluble form and in the coacervate phase, but not as stable metal-polyP nanoparticles. Therefore, understanding the mechanisms of formation of polyP coacervates and nanoparticles as well as their transformations is important for the design of novel materials for tissue implants, wound healing, and drug delivery and is discussed here.</abstract><cop>New Zealand</cop><pub>Dove Medical Press Limited</pub><pmid>36474526</pmid><doi>10.2147/IJN.S389819</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-8223-3689</orcidid><orcidid>https://orcid.org/0000-0003-1796-6314</orcidid><orcidid>https://orcid.org/0000-0002-2383-6412</orcidid><orcidid>https://orcid.org/0000-0003-0992-6427</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1178-2013 |
ispartof | International journal of nanomedicine, 2022-01, Vol.17, p.5825-5850 |
issn | 1178-2013 1176-9114 1178-2013 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0528ed18106d4b8b92c3349ee5300236 |
source | Publicly Available Content (ProQuest); Taylor & Francis Open Access Journals; PubMed Central; Coronavirus Research Database |
subjects | Aqueous solutions Biological products biomaterial Drug delivery systems Drugs Energy Hydrogels metabolic energy Metabolism morphogenetic activity Oxygen phase separation Polymers polyphosphate nanoparticles Proteins Review Solvents Technology application Tissue engineering tissue regeneration Vehicles |
title | Inorganic Polyphosphate: Coacervate Formation and Functional Significance in Nanomedical Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inorganic%20Polyphosphate:%20Coacervate%20Formation%20and%20Functional%20Significance%20in%20Nanomedical%20Applications&rft.jtitle=International%20journal%20of%20nanomedicine&rft.au=Schr%C3%B6der,%20Heinz%20C&rft.date=2022-01-01&rft.volume=17&rft.spage=5825&rft.epage=5850&rft.pages=5825-5850&rft.issn=1178-2013&rft.eissn=1178-2013&rft_id=info:doi/10.2147/IJN.S389819&rft_dat=%3Cgale_doaj_%3EA734602857%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-3b41d4a665101cd20bb37bf53b970730a4584707f421979351c830b368a3789d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2755184789&rft_id=info:pmid/36474526&rft_galeid=A734602857&rfr_iscdi=true |