Loading…

Optimizing Chemical Reactions with Deep Reinforcement Learning

Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% f...

Full description

Saved in:
Bibliographic Details
Published in:ACS central science 2017-12, Vol.3 (12), p.1337-1344
Main Authors: Zhou, Zhenpeng, Li, Xiaocheng, Zare, Richard N
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a507t-3a60bae805a1880362934ce0580df79060489d29da17c1bb9a766ae1d6ed58ae3
cites cdi_FETCH-LOGICAL-a507t-3a60bae805a1880362934ce0580df79060489d29da17c1bb9a766ae1d6ed58ae3
container_end_page 1344
container_issue 12
container_start_page 1337
container_title ACS central science
container_volume 3
creator Zhou, Zhenpeng
Li, Xiaocheng
Zare, Richard N
description Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability.
doi_str_mv 10.1021/acscentsci.7b00492
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_054d66e759f04b41a8e3a3298113a24b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_054d66e759f04b41a8e3a3298113a24b</doaj_id><sourcerecordid>1984228613</sourcerecordid><originalsourceid>FETCH-LOGICAL-a507t-3a60bae805a1880362934ce0580df79060489d29da17c1bb9a766ae1d6ed58ae3</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EolXpH-CA9sglwd8fl0oofFWKVAnB2Zr1ziaOdtfB3lDBr8clIdALpxmN3_cZa15CXjK6ZJSzNxBKwGkuIS5NS6l0_Am55MLIhXGKPT33UlyQ61J2lFImtVbcPCcX3HGntVGX5OZuP8cx_ozTplltcYwBhuYzQphjmkpzH-dt8w5xX2dx6lMOONatzRohT9XzgjzrYSh4fapX5OuH919Wnxbru4-3q7frBShq5oUATVtASxUwa6nQ3AkZkCpLu944qqm0ruOuA2YCa1sHRmtA1mnslAUUV-T2yO0S7Pw-xxHyD58g-t-DlDce8hzDgJ4q2WmNRrmeylYysChAcGcZE8BlW1k3R9b-0I7YPVwxw_AI-vhlilu_Sd-9MlJbZSrg9QmQ07cDltmPsYYxDDBhOhTPnJWcW81ElfKjNORUSsb-vIZR_5Cj_5ujP-VYTa_-_eDZ8ie1KlgeBdXsd-mQp3r7_xF_AYLdqzQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984228613</pqid></control><display><type>article</type><title>Optimizing Chemical Reactions with Deep Reinforcement Learning</title><source>PubMed Central</source><creator>Zhou, Zhenpeng ; Li, Xiaocheng ; Zare, Richard N</creator><creatorcontrib>Zhou, Zhenpeng ; Li, Xiaocheng ; Zare, Richard N</creatorcontrib><description>Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability.</description><identifier>ISSN: 2374-7943</identifier><identifier>EISSN: 2374-7951</identifier><identifier>DOI: 10.1021/acscentsci.7b00492</identifier><identifier>PMID: 29296675</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS central science, 2017-12, Vol.3 (12), p.1337-1344</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright © 2017 American Chemical Society 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a507t-3a60bae805a1880362934ce0580df79060489d29da17c1bb9a766ae1d6ed58ae3</citedby><cites>FETCH-LOGICAL-a507t-3a60bae805a1880362934ce0580df79060489d29da17c1bb9a766ae1d6ed58ae3</cites><orcidid>0000-0002-3282-9468 ; 0000-0001-5266-4253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746857/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746857/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29296675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Zhenpeng</creatorcontrib><creatorcontrib>Li, Xiaocheng</creatorcontrib><creatorcontrib>Zare, Richard N</creatorcontrib><title>Optimizing Chemical Reactions with Deep Reinforcement Learning</title><title>ACS central science</title><addtitle>ACS Cent. Sci</addtitle><description>Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability.</description><issn>2374-7943</issn><issn>2374-7951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1vEzEQhi0EolXpH-CA9sglwd8fl0oofFWKVAnB2Zr1ziaOdtfB3lDBr8clIdALpxmN3_cZa15CXjK6ZJSzNxBKwGkuIS5NS6l0_Am55MLIhXGKPT33UlyQ61J2lFImtVbcPCcX3HGntVGX5OZuP8cx_ozTplltcYwBhuYzQphjmkpzH-dt8w5xX2dx6lMOONatzRohT9XzgjzrYSh4fapX5OuH919Wnxbru4-3q7frBShq5oUATVtASxUwa6nQ3AkZkCpLu944qqm0ruOuA2YCa1sHRmtA1mnslAUUV-T2yO0S7Pw-xxHyD58g-t-DlDce8hzDgJ4q2WmNRrmeylYysChAcGcZE8BlW1k3R9b-0I7YPVwxw_AI-vhlilu_Sd-9MlJbZSrg9QmQ07cDltmPsYYxDDBhOhTPnJWcW81ElfKjNORUSsb-vIZR_5Cj_5ujP-VYTa_-_eDZ8ie1KlgeBdXsd-mQp3r7_xF_AYLdqzQ</recordid><startdate>20171227</startdate><enddate>20171227</enddate><creator>Zhou, Zhenpeng</creator><creator>Li, Xiaocheng</creator><creator>Zare, Richard N</creator><general>American Chemical Society</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3282-9468</orcidid><orcidid>https://orcid.org/0000-0001-5266-4253</orcidid></search><sort><creationdate>20171227</creationdate><title>Optimizing Chemical Reactions with Deep Reinforcement Learning</title><author>Zhou, Zhenpeng ; Li, Xiaocheng ; Zare, Richard N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a507t-3a60bae805a1880362934ce0580df79060489d29da17c1bb9a766ae1d6ed58ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhenpeng</creatorcontrib><creatorcontrib>Li, Xiaocheng</creatorcontrib><creatorcontrib>Zare, Richard N</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ACS central science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhenpeng</au><au>Li, Xiaocheng</au><au>Zare, Richard N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Chemical Reactions with Deep Reinforcement Learning</atitle><jtitle>ACS central science</jtitle><addtitle>ACS Cent. Sci</addtitle><date>2017-12-27</date><risdate>2017</risdate><volume>3</volume><issue>12</issue><spage>1337</spage><epage>1344</epage><pages>1337-1344</pages><issn>2374-7943</issn><eissn>2374-7951</eissn><abstract>Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29296675</pmid><doi>10.1021/acscentsci.7b00492</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3282-9468</orcidid><orcidid>https://orcid.org/0000-0001-5266-4253</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2374-7943
ispartof ACS central science, 2017-12, Vol.3 (12), p.1337-1344
issn 2374-7943
2374-7951
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_054d66e759f04b41a8e3a3298113a24b
source PubMed Central
title Optimizing Chemical Reactions with Deep Reinforcement Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Chemical%20Reactions%20with%20Deep%20Reinforcement%20Learning&rft.jtitle=ACS%20central%20science&rft.au=Zhou,%20Zhenpeng&rft.date=2017-12-27&rft.volume=3&rft.issue=12&rft.spage=1337&rft.epage=1344&rft.pages=1337-1344&rft.issn=2374-7943&rft.eissn=2374-7951&rft_id=info:doi/10.1021/acscentsci.7b00492&rft_dat=%3Cproquest_doaj_%3E1984228613%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a507t-3a60bae805a1880362934ce0580df79060489d29da17c1bb9a766ae1d6ed58ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1984228613&rft_id=info:pmid/29296675&rfr_iscdi=true