Loading…
Optimizing Chemical Reactions with Deep Reinforcement Learning
Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% f...
Saved in:
Published in: | ACS central science 2017-12, Vol.3 (12), p.1337-1344 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a507t-3a60bae805a1880362934ce0580df79060489d29da17c1bb9a766ae1d6ed58ae3 |
---|---|
cites | cdi_FETCH-LOGICAL-a507t-3a60bae805a1880362934ce0580df79060489d29da17c1bb9a766ae1d6ed58ae3 |
container_end_page | 1344 |
container_issue | 12 |
container_start_page | 1337 |
container_title | ACS central science |
container_volume | 3 |
creator | Zhou, Zhenpeng Li, Xiaocheng Zare, Richard N |
description | Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability. |
doi_str_mv | 10.1021/acscentsci.7b00492 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_054d66e759f04b41a8e3a3298113a24b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_054d66e759f04b41a8e3a3298113a24b</doaj_id><sourcerecordid>1984228613</sourcerecordid><originalsourceid>FETCH-LOGICAL-a507t-3a60bae805a1880362934ce0580df79060489d29da17c1bb9a766ae1d6ed58ae3</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EolXpH-CA9sglwd8fl0oofFWKVAnB2Zr1ziaOdtfB3lDBr8clIdALpxmN3_cZa15CXjK6ZJSzNxBKwGkuIS5NS6l0_Am55MLIhXGKPT33UlyQ61J2lFImtVbcPCcX3HGntVGX5OZuP8cx_ozTplltcYwBhuYzQphjmkpzH-dt8w5xX2dx6lMOONatzRohT9XzgjzrYSh4fapX5OuH919Wnxbru4-3q7frBShq5oUATVtASxUwa6nQ3AkZkCpLu944qqm0ruOuA2YCa1sHRmtA1mnslAUUV-T2yO0S7Pw-xxHyD58g-t-DlDce8hzDgJ4q2WmNRrmeylYysChAcGcZE8BlW1k3R9b-0I7YPVwxw_AI-vhlilu_Sd-9MlJbZSrg9QmQ07cDltmPsYYxDDBhOhTPnJWcW81ElfKjNORUSsb-vIZR_5Cj_5ujP-VYTa_-_eDZ8ie1KlgeBdXsd-mQp3r7_xF_AYLdqzQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984228613</pqid></control><display><type>article</type><title>Optimizing Chemical Reactions with Deep Reinforcement Learning</title><source>PubMed Central</source><creator>Zhou, Zhenpeng ; Li, Xiaocheng ; Zare, Richard N</creator><creatorcontrib>Zhou, Zhenpeng ; Li, Xiaocheng ; Zare, Richard N</creatorcontrib><description>Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability.</description><identifier>ISSN: 2374-7943</identifier><identifier>EISSN: 2374-7951</identifier><identifier>DOI: 10.1021/acscentsci.7b00492</identifier><identifier>PMID: 29296675</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS central science, 2017-12, Vol.3 (12), p.1337-1344</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright © 2017 American Chemical Society 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a507t-3a60bae805a1880362934ce0580df79060489d29da17c1bb9a766ae1d6ed58ae3</citedby><cites>FETCH-LOGICAL-a507t-3a60bae805a1880362934ce0580df79060489d29da17c1bb9a766ae1d6ed58ae3</cites><orcidid>0000-0002-3282-9468 ; 0000-0001-5266-4253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746857/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746857/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29296675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Zhenpeng</creatorcontrib><creatorcontrib>Li, Xiaocheng</creatorcontrib><creatorcontrib>Zare, Richard N</creatorcontrib><title>Optimizing Chemical Reactions with Deep Reinforcement Learning</title><title>ACS central science</title><addtitle>ACS Cent. Sci</addtitle><description>Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability.</description><issn>2374-7943</issn><issn>2374-7951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1vEzEQhi0EolXpH-CA9sglwd8fl0oofFWKVAnB2Zr1ziaOdtfB3lDBr8clIdALpxmN3_cZa15CXjK6ZJSzNxBKwGkuIS5NS6l0_Am55MLIhXGKPT33UlyQ61J2lFImtVbcPCcX3HGntVGX5OZuP8cx_ozTplltcYwBhuYzQphjmkpzH-dt8w5xX2dx6lMOONatzRohT9XzgjzrYSh4fapX5OuH919Wnxbru4-3q7frBShq5oUATVtASxUwa6nQ3AkZkCpLu944qqm0ruOuA2YCa1sHRmtA1mnslAUUV-T2yO0S7Pw-xxHyD58g-t-DlDce8hzDgJ4q2WmNRrmeylYysChAcGcZE8BlW1k3R9b-0I7YPVwxw_AI-vhlilu_Sd-9MlJbZSrg9QmQ07cDltmPsYYxDDBhOhTPnJWcW81ElfKjNORUSsb-vIZR_5Cj_5ujP-VYTa_-_eDZ8ie1KlgeBdXsd-mQp3r7_xF_AYLdqzQ</recordid><startdate>20171227</startdate><enddate>20171227</enddate><creator>Zhou, Zhenpeng</creator><creator>Li, Xiaocheng</creator><creator>Zare, Richard N</creator><general>American Chemical Society</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3282-9468</orcidid><orcidid>https://orcid.org/0000-0001-5266-4253</orcidid></search><sort><creationdate>20171227</creationdate><title>Optimizing Chemical Reactions with Deep Reinforcement Learning</title><author>Zhou, Zhenpeng ; Li, Xiaocheng ; Zare, Richard N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a507t-3a60bae805a1880362934ce0580df79060489d29da17c1bb9a766ae1d6ed58ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhenpeng</creatorcontrib><creatorcontrib>Li, Xiaocheng</creatorcontrib><creatorcontrib>Zare, Richard N</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ACS central science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhenpeng</au><au>Li, Xiaocheng</au><au>Zare, Richard N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Chemical Reactions with Deep Reinforcement Learning</atitle><jtitle>ACS central science</jtitle><addtitle>ACS Cent. Sci</addtitle><date>2017-12-27</date><risdate>2017</risdate><volume>3</volume><issue>12</issue><spage>1337</spage><epage>1344</epage><pages>1337-1344</pages><issn>2374-7943</issn><eissn>2374-7951</eissn><abstract>Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29296675</pmid><doi>10.1021/acscentsci.7b00492</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3282-9468</orcidid><orcidid>https://orcid.org/0000-0001-5266-4253</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2374-7943 |
ispartof | ACS central science, 2017-12, Vol.3 (12), p.1337-1344 |
issn | 2374-7943 2374-7951 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_054d66e759f04b41a8e3a3298113a24b |
source | PubMed Central |
title | Optimizing Chemical Reactions with Deep Reinforcement Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Chemical%20Reactions%20with%20Deep%20Reinforcement%20Learning&rft.jtitle=ACS%20central%20science&rft.au=Zhou,%20Zhenpeng&rft.date=2017-12-27&rft.volume=3&rft.issue=12&rft.spage=1337&rft.epage=1344&rft.pages=1337-1344&rft.issn=2374-7943&rft.eissn=2374-7951&rft_id=info:doi/10.1021/acscentsci.7b00492&rft_dat=%3Cproquest_doaj_%3E1984228613%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a507t-3a60bae805a1880362934ce0580df79060489d29da17c1bb9a766ae1d6ed58ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1984228613&rft_id=info:pmid/29296675&rfr_iscdi=true |