Loading…

Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers

Variational quantum eigensolvers (VQE) are among the most promising approaches for solving electronic structure problems on near-term quantum computers. A critical challenge for VQE in practice is that one needs to strike a balance between the expressivity of the VQE ansatz versus the number of quan...

Full description

Saved in:
Bibliographic Details
Published in:npj quantum information 2023-06, Vol.9 (1), p.60-9, Article 60
Main Authors: Zhao, Luning, Goings, Joshua, Shin, Kyujin, Kyoung, Woomin, Fuks, Johanna I., Kevin Rhee, June-Koo, Rhee, Young Min, Wright, Kenneth, Nguyen, Jason, Kim, Jungsang, Johri, Sonika
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-c5378b5ccda68932085b991af9b7b45ba3388e57dc9877c42a6d252221c9ef063
cites cdi_FETCH-LOGICAL-c429t-c5378b5ccda68932085b991af9b7b45ba3388e57dc9877c42a6d252221c9ef063
container_end_page 9
container_issue 1
container_start_page 60
container_title npj quantum information
container_volume 9
creator Zhao, Luning
Goings, Joshua
Shin, Kyujin
Kyoung, Woomin
Fuks, Johanna I.
Kevin Rhee, June-Koo
Rhee, Young Min
Wright, Kenneth
Nguyen, Jason
Kim, Jungsang
Johri, Sonika
description Variational quantum eigensolvers (VQE) are among the most promising approaches for solving electronic structure problems on near-term quantum computers. A critical challenge for VQE in practice is that one needs to strike a balance between the expressivity of the VQE ansatz versus the number of quantum gates required to implement the ansatz, given the reality of noisy quantum operations on near-term quantum computers. In this work, we consider an orbital-optimized pair-correlated approximation to the unitary coupled cluster with singles and doubles (uCCSD) ansatz and report a highly efficient quantum circuit implementation for trapped-ion architectures. We show that orbital optimization can recover significant additional electron correlation energy without sacrificing efficiency through measurements of low-order reduced density matrices (RDMs). In the dissociation of small molecules, the method gives qualitatively accurate predictions in the strongly-correlated regime when running on noise-free quantum simulators. On IonQ’s Harmony and Aria trapped-ion quantum computers, we run end-to-end VQE algorithms with up to 12 qubits and 72 variational parameters—the largest full VQE simulation with a correlated wave function on quantum hardware. We find that even without error mitigation techniques, the predicted relative energies across different molecular geometries are in excellent agreement with noise-free simulators.
doi_str_mv 10.1038/s41534-023-00730-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_05584fbbae6241d88e2350fe69b6ac99</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_05584fbbae6241d88e2350fe69b6ac99</doaj_id><sourcerecordid>2828981737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-c5378b5ccda68932085b991af9b7b45ba3388e57dc9877c42a6d252221c9ef063</originalsourceid><addsrcrecordid>eNp9kctOxCAYhRujiZNxXsBVE9col1JgaSZeJplkNhqXBCidMGlLB-hCn16cGnXlCs6fcz4upyiuEbxFkPC7WCFKKgAxARAyAgE_KxYY0hrUhLPzP_vLYhXjAUKIBOa4QovibRe0S6oDfkyudx-2KUflAjA-BNuplLXtrEnBD2V0_ZRHzg-xzDIFNY62AVmXx0kNaepL4_txSjbEq-KiVV20q-91Wbw-Prysn8F297RZ32-BqbBIwFDCuKbGNKrmgmDIqRYCqVZopiuqFSGcW8oaIzhjOaPqBlOMMTLCtrAmy2IzcxuvDnIMrlfhXXrl5Gngw16qkJzprISU8qrVWtk6P73JXEwobG0tdK2MEJl1M7PG4I-TjUke_BSGfH2Zf4sLjhhh2YVnlwk-xmDbn1MRlF99yLkPmfuQpz4kzyEyh2I2D3sbftH_pD4BJiaOGQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828981737</pqid></control><display><type>article</type><title>Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhao, Luning ; Goings, Joshua ; Shin, Kyujin ; Kyoung, Woomin ; Fuks, Johanna I. ; Kevin Rhee, June-Koo ; Rhee, Young Min ; Wright, Kenneth ; Nguyen, Jason ; Kim, Jungsang ; Johri, Sonika</creator><creatorcontrib>Zhao, Luning ; Goings, Joshua ; Shin, Kyujin ; Kyoung, Woomin ; Fuks, Johanna I. ; Kevin Rhee, June-Koo ; Rhee, Young Min ; Wright, Kenneth ; Nguyen, Jason ; Kim, Jungsang ; Johri, Sonika</creatorcontrib><description>Variational quantum eigensolvers (VQE) are among the most promising approaches for solving electronic structure problems on near-term quantum computers. A critical challenge for VQE in practice is that one needs to strike a balance between the expressivity of the VQE ansatz versus the number of quantum gates required to implement the ansatz, given the reality of noisy quantum operations on near-term quantum computers. In this work, we consider an orbital-optimized pair-correlated approximation to the unitary coupled cluster with singles and doubles (uCCSD) ansatz and report a highly efficient quantum circuit implementation for trapped-ion architectures. We show that orbital optimization can recover significant additional electron correlation energy without sacrificing efficiency through measurements of low-order reduced density matrices (RDMs). In the dissociation of small molecules, the method gives qualitatively accurate predictions in the strongly-correlated regime when running on noise-free quantum simulators. On IonQ’s Harmony and Aria trapped-ion quantum computers, we run end-to-end VQE algorithms with up to 12 qubits and 72 variational parameters—the largest full VQE simulation with a correlated wave function on quantum hardware. We find that even without error mitigation techniques, the predicted relative energies across different molecular geometries are in excellent agreement with noise-free simulators.</description><identifier>ISSN: 2056-6387</identifier><identifier>EISSN: 2056-6387</identifier><identifier>DOI: 10.1038/s41534-023-00730-8</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/563/758 ; 639/766/483/3926 ; Classical and Quantum Gravitation ; Computers ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Field Theories ; Quantum Information Technology ; Quantum Physics ; Relativity Theory ; Spintronics ; String Theory</subject><ispartof>npj quantum information, 2023-06, Vol.9 (1), p.60-9, Article 60</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-c5378b5ccda68932085b991af9b7b45ba3388e57dc9877c42a6d252221c9ef063</citedby><cites>FETCH-LOGICAL-c429t-c5378b5ccda68932085b991af9b7b45ba3388e57dc9877c42a6d252221c9ef063</cites><orcidid>0000-0001-6787-9695 ; 0009-0009-6749-3595 ; 0000-0002-1389-2998 ; 0000-0002-5098-6723 ; 0000-0002-2392-3962 ; 0000-0002-8989-3751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2828981737/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2828981737?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Zhao, Luning</creatorcontrib><creatorcontrib>Goings, Joshua</creatorcontrib><creatorcontrib>Shin, Kyujin</creatorcontrib><creatorcontrib>Kyoung, Woomin</creatorcontrib><creatorcontrib>Fuks, Johanna I.</creatorcontrib><creatorcontrib>Kevin Rhee, June-Koo</creatorcontrib><creatorcontrib>Rhee, Young Min</creatorcontrib><creatorcontrib>Wright, Kenneth</creatorcontrib><creatorcontrib>Nguyen, Jason</creatorcontrib><creatorcontrib>Kim, Jungsang</creatorcontrib><creatorcontrib>Johri, Sonika</creatorcontrib><title>Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers</title><title>npj quantum information</title><addtitle>npj Quantum Inf</addtitle><description>Variational quantum eigensolvers (VQE) are among the most promising approaches for solving electronic structure problems on near-term quantum computers. A critical challenge for VQE in practice is that one needs to strike a balance between the expressivity of the VQE ansatz versus the number of quantum gates required to implement the ansatz, given the reality of noisy quantum operations on near-term quantum computers. In this work, we consider an orbital-optimized pair-correlated approximation to the unitary coupled cluster with singles and doubles (uCCSD) ansatz and report a highly efficient quantum circuit implementation for trapped-ion architectures. We show that orbital optimization can recover significant additional electron correlation energy without sacrificing efficiency through measurements of low-order reduced density matrices (RDMs). In the dissociation of small molecules, the method gives qualitatively accurate predictions in the strongly-correlated regime when running on noise-free quantum simulators. On IonQ’s Harmony and Aria trapped-ion quantum computers, we run end-to-end VQE algorithms with up to 12 qubits and 72 variational parameters—the largest full VQE simulation with a correlated wave function on quantum hardware. We find that even without error mitigation techniques, the predicted relative energies across different molecular geometries are in excellent agreement with noise-free simulators.</description><subject>639/638/563/758</subject><subject>639/766/483/3926</subject><subject>Classical and Quantum Gravitation</subject><subject>Computers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Field Theories</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Spintronics</subject><subject>String Theory</subject><issn>2056-6387</issn><issn>2056-6387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctOxCAYhRujiZNxXsBVE9col1JgaSZeJplkNhqXBCidMGlLB-hCn16cGnXlCs6fcz4upyiuEbxFkPC7WCFKKgAxARAyAgE_KxYY0hrUhLPzP_vLYhXjAUKIBOa4QovibRe0S6oDfkyudx-2KUflAjA-BNuplLXtrEnBD2V0_ZRHzg-xzDIFNY62AVmXx0kNaepL4_txSjbEq-KiVV20q-91Wbw-Prysn8F297RZ32-BqbBIwFDCuKbGNKrmgmDIqRYCqVZopiuqFSGcW8oaIzhjOaPqBlOMMTLCtrAmy2IzcxuvDnIMrlfhXXrl5Gngw16qkJzprISU8qrVWtk6P73JXEwobG0tdK2MEJl1M7PG4I-TjUke_BSGfH2Zf4sLjhhh2YVnlwk-xmDbn1MRlF99yLkPmfuQpz4kzyEyh2I2D3sbftH_pD4BJiaOGQ</recordid><startdate>20230623</startdate><enddate>20230623</enddate><creator>Zhao, Luning</creator><creator>Goings, Joshua</creator><creator>Shin, Kyujin</creator><creator>Kyoung, Woomin</creator><creator>Fuks, Johanna I.</creator><creator>Kevin Rhee, June-Koo</creator><creator>Rhee, Young Min</creator><creator>Wright, Kenneth</creator><creator>Nguyen, Jason</creator><creator>Kim, Jungsang</creator><creator>Johri, Sonika</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6787-9695</orcidid><orcidid>https://orcid.org/0009-0009-6749-3595</orcidid><orcidid>https://orcid.org/0000-0002-1389-2998</orcidid><orcidid>https://orcid.org/0000-0002-5098-6723</orcidid><orcidid>https://orcid.org/0000-0002-2392-3962</orcidid><orcidid>https://orcid.org/0000-0002-8989-3751</orcidid></search><sort><creationdate>20230623</creationdate><title>Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers</title><author>Zhao, Luning ; Goings, Joshua ; Shin, Kyujin ; Kyoung, Woomin ; Fuks, Johanna I. ; Kevin Rhee, June-Koo ; Rhee, Young Min ; Wright, Kenneth ; Nguyen, Jason ; Kim, Jungsang ; Johri, Sonika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-c5378b5ccda68932085b991af9b7b45ba3388e57dc9877c42a6d252221c9ef063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/638/563/758</topic><topic>639/766/483/3926</topic><topic>Classical and Quantum Gravitation</topic><topic>Computers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Field Theories</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Spintronics</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Luning</creatorcontrib><creatorcontrib>Goings, Joshua</creatorcontrib><creatorcontrib>Shin, Kyujin</creatorcontrib><creatorcontrib>Kyoung, Woomin</creatorcontrib><creatorcontrib>Fuks, Johanna I.</creatorcontrib><creatorcontrib>Kevin Rhee, June-Koo</creatorcontrib><creatorcontrib>Rhee, Young Min</creatorcontrib><creatorcontrib>Wright, Kenneth</creatorcontrib><creatorcontrib>Nguyen, Jason</creatorcontrib><creatorcontrib>Kim, Jungsang</creatorcontrib><creatorcontrib>Johri, Sonika</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>npj quantum information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Luning</au><au>Goings, Joshua</au><au>Shin, Kyujin</au><au>Kyoung, Woomin</au><au>Fuks, Johanna I.</au><au>Kevin Rhee, June-Koo</au><au>Rhee, Young Min</au><au>Wright, Kenneth</au><au>Nguyen, Jason</au><au>Kim, Jungsang</au><au>Johri, Sonika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers</atitle><jtitle>npj quantum information</jtitle><stitle>npj Quantum Inf</stitle><date>2023-06-23</date><risdate>2023</risdate><volume>9</volume><issue>1</issue><spage>60</spage><epage>9</epage><pages>60-9</pages><artnum>60</artnum><issn>2056-6387</issn><eissn>2056-6387</eissn><abstract>Variational quantum eigensolvers (VQE) are among the most promising approaches for solving electronic structure problems on near-term quantum computers. A critical challenge for VQE in practice is that one needs to strike a balance between the expressivity of the VQE ansatz versus the number of quantum gates required to implement the ansatz, given the reality of noisy quantum operations on near-term quantum computers. In this work, we consider an orbital-optimized pair-correlated approximation to the unitary coupled cluster with singles and doubles (uCCSD) ansatz and report a highly efficient quantum circuit implementation for trapped-ion architectures. We show that orbital optimization can recover significant additional electron correlation energy without sacrificing efficiency through measurements of low-order reduced density matrices (RDMs). In the dissociation of small molecules, the method gives qualitatively accurate predictions in the strongly-correlated regime when running on noise-free quantum simulators. On IonQ’s Harmony and Aria trapped-ion quantum computers, we run end-to-end VQE algorithms with up to 12 qubits and 72 variational parameters—the largest full VQE simulation with a correlated wave function on quantum hardware. We find that even without error mitigation techniques, the predicted relative energies across different molecular geometries are in excellent agreement with noise-free simulators.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41534-023-00730-8</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6787-9695</orcidid><orcidid>https://orcid.org/0009-0009-6749-3595</orcidid><orcidid>https://orcid.org/0000-0002-1389-2998</orcidid><orcidid>https://orcid.org/0000-0002-5098-6723</orcidid><orcidid>https://orcid.org/0000-0002-2392-3962</orcidid><orcidid>https://orcid.org/0000-0002-8989-3751</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2056-6387
ispartof npj quantum information, 2023-06, Vol.9 (1), p.60-9, Article 60
issn 2056-6387
2056-6387
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_05584fbbae6241d88e2350fe69b6ac99
source Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/638/563/758
639/766/483/3926
Classical and Quantum Gravitation
Computers
Physics
Physics and Astronomy
Quantum Computing
Quantum Field Theories
Quantum Information Technology
Quantum Physics
Relativity Theory
Spintronics
String Theory
title Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orbital-optimized%20pair-correlated%20electron%20simulations%20on%20trapped-ion%20quantum%20computers&rft.jtitle=npj%20quantum%20information&rft.au=Zhao,%20Luning&rft.date=2023-06-23&rft.volume=9&rft.issue=1&rft.spage=60&rft.epage=9&rft.pages=60-9&rft.artnum=60&rft.issn=2056-6387&rft.eissn=2056-6387&rft_id=info:doi/10.1038/s41534-023-00730-8&rft_dat=%3Cproquest_doaj_%3E2828981737%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-c5378b5ccda68932085b991af9b7b45ba3388e57dc9877c42a6d252221c9ef063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2828981737&rft_id=info:pmid/&rfr_iscdi=true