Loading…
Residual power series scheme treatments for fractional Klein-Gordon problem arising in soliton theory
The Klein-Gordon problem (KGP) is one of the interesting models that appear in many scientific phenomena. These models are characterized by memory effects, which provide insight into complex phenomena in the fields of physics. In this regard, we propose a new robust algorithm called the confluent Be...
Saved in:
Published in: | Scientific reports 2024-12, Vol.14 (1), p.30596-16, Article 30596 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2939-64956cf4b96115b9390493cebbd6c9e2d98b854ad054019df40b974b98a105593 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 30596 |
container_title | Scientific reports |
container_volume | 14 |
creator | Rida, Saad Z. Arafa, Anas A. M. Hussein, Hussein S. Ameen, Ismail Gad Mostafa, Marwa M. M. |
description | The Klein-Gordon problem (KGP) is one of the interesting models that appear in many scientific phenomena. These models are characterized by memory effects, which provide insight into complex phenomena in the fields of physics. In this regard, we propose a new robust algorithm called the confluent Bernoulli approach with residual power series scheme (CBCA-RPSS) to give an approximate solution for the fractional nonlinear KGP. The convergence, uniqueness and error analysis of the proposed method are discussed in detail. A comparison of the numerical results obtained by CBCA-RPSS with the results obtained by some well-known algorithms is presented. Numerical simulations using base errors indicate that CBCA-RPSS is an accurate and efficient technique and thus can be used to solve linear and nonlinear fractional models in physics and engineering. All the numerical results for the studied problems were obtained through implementation codes in Matlab R2017b. |
doi_str_mv | 10.1038/s41598-024-79247-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0563bb1b14434ae2be99e805e9c11a44</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0563bb1b14434ae2be99e805e9c11a44</doaj_id><sourcerecordid>3148838757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-64956cf4b96115b9390493cebbd6c9e2d98b854ad054019df40b974b98a105593</originalsourceid><addsrcrecordid>eNp9kk9v1DAQxSMEotXSL8ABWeLCJeC_ieeEUAWlohISgrNlO5Ndr5J4sZOifnu8TSktB3yxNe_nN_boVdVLRt8yKvS7LJkCXVMu6xa4bGt4Up1yKlXNBedPH5xPqrOc97QsxUEyeF6dCGiZapU-rfAb5tAtdiCH-AsTyZgCZpL9Dkckc0I7jzjNmfQxkT5ZP4c4FfrLgGGqL2Lq4kQOKboBR2JTyGHakjCRHIcwF2neYUw3L6pnvR0ynt3tm-rHp4_fzz_XV18vLs8_XNWeg4C6kaAa30sHDWPKlRKVIDw61zUekHegnVbSdlRJyqDrJXXQFlxbRpUCsakuV98u2r05pDDadGOiDea2ENPW2DQHP6ChqhHOMcekFNIidwiAmioEz5gtxU31fvU6LG7EzpcpJDs8Mn2sTGFntvHaMNY0Tcvb4vDmziHFnwvm2YwhexwGO2FcshFMai10q47o63_QfVxSGfRKNdBySQvFV8qnmHPC_v41jJpjKsyaClNSYW5TYY4zefXwH_dX_mSgAGIFcpGmLaa_vf9j-xue-MLp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148697240</pqid></control><display><type>article</type><title>Residual power series scheme treatments for fractional Klein-Gordon problem arising in soliton theory</title><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central (PMC)</source><source>ProQuest - Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Rida, Saad Z. ; Arafa, Anas A. M. ; Hussein, Hussein S. ; Ameen, Ismail Gad ; Mostafa, Marwa M. M.</creator><creatorcontrib>Rida, Saad Z. ; Arafa, Anas A. M. ; Hussein, Hussein S. ; Ameen, Ismail Gad ; Mostafa, Marwa M. M.</creatorcontrib><description>The Klein-Gordon problem (KGP) is one of the interesting models that appear in many scientific phenomena. These models are characterized by memory effects, which provide insight into complex phenomena in the fields of physics. In this regard, we propose a new robust algorithm called the confluent Bernoulli approach with residual power series scheme (CBCA-RPSS) to give an approximate solution for the fractional nonlinear KGP. The convergence, uniqueness and error analysis of the proposed method are discussed in detail. A comparison of the numerical results obtained by CBCA-RPSS with the results obtained by some well-known algorithms is presented. Numerical simulations using base errors indicate that CBCA-RPSS is an accurate and efficient technique and thus can be used to solve linear and nonlinear fractional models in physics and engineering. All the numerical results for the studied problems were obtained through implementation codes in Matlab R2017b.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-79247-9</identifier><identifier>PMID: 39715758</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705 ; 639/705/1042 ; 639/705/1045 ; Algorithms ; Confluent Bernoulli polynomials ; Fractional derivatives ; Humanities and Social Sciences ; Klien-Gordon equations ; multidisciplinary ; Numerical results ; Physics ; Residual power series scheme ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2024-12, Vol.14 (1), p.30596-16, Article 30596</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2939-64956cf4b96115b9390493cebbd6c9e2d98b854ad054019df40b974b98a105593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3148697240/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3148697240?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39715758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rida, Saad Z.</creatorcontrib><creatorcontrib>Arafa, Anas A. M.</creatorcontrib><creatorcontrib>Hussein, Hussein S.</creatorcontrib><creatorcontrib>Ameen, Ismail Gad</creatorcontrib><creatorcontrib>Mostafa, Marwa M. M.</creatorcontrib><title>Residual power series scheme treatments for fractional Klein-Gordon problem arising in soliton theory</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The Klein-Gordon problem (KGP) is one of the interesting models that appear in many scientific phenomena. These models are characterized by memory effects, which provide insight into complex phenomena in the fields of physics. In this regard, we propose a new robust algorithm called the confluent Bernoulli approach with residual power series scheme (CBCA-RPSS) to give an approximate solution for the fractional nonlinear KGP. The convergence, uniqueness and error analysis of the proposed method are discussed in detail. A comparison of the numerical results obtained by CBCA-RPSS with the results obtained by some well-known algorithms is presented. Numerical simulations using base errors indicate that CBCA-RPSS is an accurate and efficient technique and thus can be used to solve linear and nonlinear fractional models in physics and engineering. All the numerical results for the studied problems were obtained through implementation codes in Matlab R2017b.</description><subject>639/705</subject><subject>639/705/1042</subject><subject>639/705/1045</subject><subject>Algorithms</subject><subject>Confluent Bernoulli polynomials</subject><subject>Fractional derivatives</subject><subject>Humanities and Social Sciences</subject><subject>Klien-Gordon equations</subject><subject>multidisciplinary</subject><subject>Numerical results</subject><subject>Physics</subject><subject>Residual power series scheme</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk9v1DAQxSMEotXSL8ABWeLCJeC_ieeEUAWlohISgrNlO5Ndr5J4sZOifnu8TSktB3yxNe_nN_boVdVLRt8yKvS7LJkCXVMu6xa4bGt4Up1yKlXNBedPH5xPqrOc97QsxUEyeF6dCGiZapU-rfAb5tAtdiCH-AsTyZgCZpL9Dkckc0I7jzjNmfQxkT5ZP4c4FfrLgGGqL2Lq4kQOKboBR2JTyGHakjCRHIcwF2neYUw3L6pnvR0ynt3tm-rHp4_fzz_XV18vLs8_XNWeg4C6kaAa30sHDWPKlRKVIDw61zUekHegnVbSdlRJyqDrJXXQFlxbRpUCsakuV98u2r05pDDadGOiDea2ENPW2DQHP6ChqhHOMcekFNIidwiAmioEz5gtxU31fvU6LG7EzpcpJDs8Mn2sTGFntvHaMNY0Tcvb4vDmziHFnwvm2YwhexwGO2FcshFMai10q47o63_QfVxSGfRKNdBySQvFV8qnmHPC_v41jJpjKsyaClNSYW5TYY4zefXwH_dX_mSgAGIFcpGmLaa_vf9j-xue-MLp</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Rida, Saad Z.</creator><creator>Arafa, Anas A. M.</creator><creator>Hussein, Hussein S.</creator><creator>Ameen, Ismail Gad</creator><creator>Mostafa, Marwa M. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241223</creationdate><title>Residual power series scheme treatments for fractional Klein-Gordon problem arising in soliton theory</title><author>Rida, Saad Z. ; Arafa, Anas A. M. ; Hussein, Hussein S. ; Ameen, Ismail Gad ; Mostafa, Marwa M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-64956cf4b96115b9390493cebbd6c9e2d98b854ad054019df40b974b98a105593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/705</topic><topic>639/705/1042</topic><topic>639/705/1045</topic><topic>Algorithms</topic><topic>Confluent Bernoulli polynomials</topic><topic>Fractional derivatives</topic><topic>Humanities and Social Sciences</topic><topic>Klien-Gordon equations</topic><topic>multidisciplinary</topic><topic>Numerical results</topic><topic>Physics</topic><topic>Residual power series scheme</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rida, Saad Z.</creatorcontrib><creatorcontrib>Arafa, Anas A. M.</creatorcontrib><creatorcontrib>Hussein, Hussein S.</creatorcontrib><creatorcontrib>Ameen, Ismail Gad</creatorcontrib><creatorcontrib>Mostafa, Marwa M. M.</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rida, Saad Z.</au><au>Arafa, Anas A. M.</au><au>Hussein, Hussein S.</au><au>Ameen, Ismail Gad</au><au>Mostafa, Marwa M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residual power series scheme treatments for fractional Klein-Gordon problem arising in soliton theory</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-12-23</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>30596</spage><epage>16</epage><pages>30596-16</pages><artnum>30596</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The Klein-Gordon problem (KGP) is one of the interesting models that appear in many scientific phenomena. These models are characterized by memory effects, which provide insight into complex phenomena in the fields of physics. In this regard, we propose a new robust algorithm called the confluent Bernoulli approach with residual power series scheme (CBCA-RPSS) to give an approximate solution for the fractional nonlinear KGP. The convergence, uniqueness and error analysis of the proposed method are discussed in detail. A comparison of the numerical results obtained by CBCA-RPSS with the results obtained by some well-known algorithms is presented. Numerical simulations using base errors indicate that CBCA-RPSS is an accurate and efficient technique and thus can be used to solve linear and nonlinear fractional models in physics and engineering. All the numerical results for the studied problems were obtained through implementation codes in Matlab R2017b.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39715758</pmid><doi>10.1038/s41598-024-79247-9</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-12, Vol.14 (1), p.30596-16, Article 30596 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0563bb1b14434ae2be99e805e9c11a44 |
source | Full-Text Journals in Chemistry (Open access); PubMed Central (PMC); ProQuest - Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/705 639/705/1042 639/705/1045 Algorithms Confluent Bernoulli polynomials Fractional derivatives Humanities and Social Sciences Klien-Gordon equations multidisciplinary Numerical results Physics Residual power series scheme Science Science (multidisciplinary) |
title | Residual power series scheme treatments for fractional Klein-Gordon problem arising in soliton theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residual%20power%20series%20scheme%20treatments%20for%20fractional%20Klein-Gordon%20problem%20arising%20in%20soliton%20theory&rft.jtitle=Scientific%20reports&rft.au=Rida,%20Saad%20Z.&rft.date=2024-12-23&rft.volume=14&rft.issue=1&rft.spage=30596&rft.epage=16&rft.pages=30596-16&rft.artnum=30596&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-79247-9&rft_dat=%3Cproquest_doaj_%3E3148838757%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2939-64956cf4b96115b9390493cebbd6c9e2d98b854ad054019df40b974b98a105593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3148697240&rft_id=info:pmid/39715758&rfr_iscdi=true |