Loading…

lionessR: single sample network inference in R

In biomedical research, network inference algorithms are typically used to infer complex association patterns between biological entities, such as between genes or proteins, using data from a population. This resulting aggregate network, in essence, averages over the networks of those individuals in...

Full description

Saved in:
Bibliographic Details
Published in:BMC cancer 2019-10, Vol.19 (1), p.1003-6, Article 1003
Main Authors: Kuijjer, Marieke L, Hsieh, Ping-Han, Quackenbush, John, Glass, Kimberly
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c597t-5a58b5fb61bb675d5458f968afe240acd94873fc5edba35e48553ad979005403
cites cdi_FETCH-LOGICAL-c597t-5a58b5fb61bb675d5458f968afe240acd94873fc5edba35e48553ad979005403
container_end_page 6
container_issue 1
container_start_page 1003
container_title BMC cancer
container_volume 19
creator Kuijjer, Marieke L
Hsieh, Ping-Han
Quackenbush, John
Glass, Kimberly
description In biomedical research, network inference algorithms are typically used to infer complex association patterns between biological entities, such as between genes or proteins, using data from a population. This resulting aggregate network, in essence, averages over the networks of those individuals in the population. LIONESS (Linear Interpolation to Obtain Network Estimates for Single Samples) is a method that can be used together with a network inference algorithm to extract networks for individual samples in a population. The method's key characteristic is that, by modeling networks for individual samples in a data set, it can capture network heterogeneity in a population. LIONESS was originally made available as a function within the PANDA (Passing Attributes between Networks for Data Assimilation) regulatory network reconstruction framework. However, the LIONESS algorithm is generalizable and can be used to model single sample networks based on a wide range of network inference algorithms. In this software article, we describe lionessR, an R implementation of LIONESS that can be applied to any network inference method in R that outputs a complete, weighted adjacency matrix. As an example, we provide a vignette of an application of lionessR to model single sample networks based on correlated gene expression in a bone cancer dataset. We show how the tool can be used to identify differential patterns of correlation between two groups of patients. We developed lionessR, an open source R package to model single sample networks. We show how lionessR can be used to inform us on potential precision medicine applications in cancer. The lionessR package is a user-friendly tool to perform such analyses. The package, which includes a vignette describing the application, is freely available at: https://github.com/kuijjerlab/lionessR and at: http://bioconductor.org/packages/lionessR .
doi_str_mv 10.1186/s12885-019-6235-7
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_05a0ade7ed2e4bca9b5c60187ac657c1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A604548641</galeid><doaj_id>oai_doaj_org_article_05a0ade7ed2e4bca9b5c60187ac657c1</doaj_id><sourcerecordid>A604548641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-5a58b5fb61bb675d5458f968afe240acd94873fc5edba35e48553ad979005403</originalsourceid><addsrcrecordid>eNptkt-L1DAQx4so3nn6B_giC4LoQ9ekzSSpD8Jx-GPhQFjvPUzTaTdnt1mT1h__vVl7HluQPMww-cyX4TuTZc85W3Ou5dvIC60hZ7zKZVFCrh5k51wonheCqYcn-Vn2JMZbxrjSTD_OzkouoSxEeZ6te-cHinH7bhXd0PW0irg_pDDQ-NOHbys3tBRosJSy1fZp9qjFPtKzu3iR3Xz8cHP1Ob_-8mlzdXmdW6jUmAOCrqGtJa9rqaABAbqtpMaW0jhom0poVbYWqKmxBBIaoMSmUhVjIFh5kW1m2cbjrTkEt8fw23h05m_Bh85gGJ3tyTBAhg0pagoStcWqBisZ1wqtBGV50no_ax2mek-NpWEM2C9Elz-D25nO_zBSc0jWJoHXdwLBf58ojmbvoqW-x4H8FE1RskpUXHKZ0Jcz2mEaLVnnk6I94uZSMgFCS3GcaP0fKr2G9s6mdbQu1RcNbxYNiRnp19jhFKPZfN0u2Vcn7I6wH3fR99OY9hyXIJ9BG3yMgdp7Szgzx_My83mZ5IE5npdRqefFqZf3Hf_uqfwD5HnHYg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309491616</pqid></control><display><type>article</type><title>lionessR: single sample network inference in R</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Kuijjer, Marieke L ; Hsieh, Ping-Han ; Quackenbush, John ; Glass, Kimberly</creator><creatorcontrib>Kuijjer, Marieke L ; Hsieh, Ping-Han ; Quackenbush, John ; Glass, Kimberly</creatorcontrib><description>In biomedical research, network inference algorithms are typically used to infer complex association patterns between biological entities, such as between genes or proteins, using data from a population. This resulting aggregate network, in essence, averages over the networks of those individuals in the population. LIONESS (Linear Interpolation to Obtain Network Estimates for Single Samples) is a method that can be used together with a network inference algorithm to extract networks for individual samples in a population. The method's key characteristic is that, by modeling networks for individual samples in a data set, it can capture network heterogeneity in a population. LIONESS was originally made available as a function within the PANDA (Passing Attributes between Networks for Data Assimilation) regulatory network reconstruction framework. However, the LIONESS algorithm is generalizable and can be used to model single sample networks based on a wide range of network inference algorithms. In this software article, we describe lionessR, an R implementation of LIONESS that can be applied to any network inference method in R that outputs a complete, weighted adjacency matrix. As an example, we provide a vignette of an application of lionessR to model single sample networks based on correlated gene expression in a bone cancer dataset. We show how the tool can be used to identify differential patterns of correlation between two groups of patients. We developed lionessR, an open source R package to model single sample networks. We show how lionessR can be used to inform us on potential precision medicine applications in cancer. The lionessR package is a user-friendly tool to perform such analyses. The package, which includes a vignette describing the application, is freely available at: https://github.com/kuijjerlab/lionessR and at: http://bioconductor.org/packages/lionessR .</description><identifier>ISSN: 1471-2407</identifier><identifier>EISSN: 1471-2407</identifier><identifier>DOI: 10.1186/s12885-019-6235-7</identifier><identifier>PMID: 31653243</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Biological networks ; Biopsy ; Bone cancer ; Bone Neoplasms - genetics ; Bone Neoplasms - pathology ; Co-expression ; Computational biology ; Computational Biology - methods ; Computer Simulation ; Gene expression ; Gene Regulatory Networks ; Genes ; Genetic regulation ; Humans ; Medical research ; Neoplasms - therapy ; Network analysis ; Osteosarcoma ; Osteosarcoma - genetics ; Osteosarcoma - pathology ; Precision medicine ; Precision Medicine - methods ; Proteins ; Software ; Software tools ; Survival Analysis ; Transcriptome</subject><ispartof>BMC cancer, 2019-10, Vol.19 (1), p.1003-6, Article 1003</ispartof><rights>COPYRIGHT 2019 BioMed Central Ltd.</rights><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-5a58b5fb61bb675d5458f968afe240acd94873fc5edba35e48553ad979005403</citedby><cites>FETCH-LOGICAL-c597t-5a58b5fb61bb675d5458f968afe240acd94873fc5edba35e48553ad979005403</cites><orcidid>0000-0001-6280-3130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815019/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815019/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,36992,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31653243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuijjer, Marieke L</creatorcontrib><creatorcontrib>Hsieh, Ping-Han</creatorcontrib><creatorcontrib>Quackenbush, John</creatorcontrib><creatorcontrib>Glass, Kimberly</creatorcontrib><title>lionessR: single sample network inference in R</title><title>BMC cancer</title><addtitle>BMC Cancer</addtitle><description>In biomedical research, network inference algorithms are typically used to infer complex association patterns between biological entities, such as between genes or proteins, using data from a population. This resulting aggregate network, in essence, averages over the networks of those individuals in the population. LIONESS (Linear Interpolation to Obtain Network Estimates for Single Samples) is a method that can be used together with a network inference algorithm to extract networks for individual samples in a population. The method's key characteristic is that, by modeling networks for individual samples in a data set, it can capture network heterogeneity in a population. LIONESS was originally made available as a function within the PANDA (Passing Attributes between Networks for Data Assimilation) regulatory network reconstruction framework. However, the LIONESS algorithm is generalizable and can be used to model single sample networks based on a wide range of network inference algorithms. In this software article, we describe lionessR, an R implementation of LIONESS that can be applied to any network inference method in R that outputs a complete, weighted adjacency matrix. As an example, we provide a vignette of an application of lionessR to model single sample networks based on correlated gene expression in a bone cancer dataset. We show how the tool can be used to identify differential patterns of correlation between two groups of patients. We developed lionessR, an open source R package to model single sample networks. We show how lionessR can be used to inform us on potential precision medicine applications in cancer. The lionessR package is a user-friendly tool to perform such analyses. The package, which includes a vignette describing the application, is freely available at: https://github.com/kuijjerlab/lionessR and at: http://bioconductor.org/packages/lionessR .</description><subject>Algorithms</subject><subject>Biological networks</subject><subject>Biopsy</subject><subject>Bone cancer</subject><subject>Bone Neoplasms - genetics</subject><subject>Bone Neoplasms - pathology</subject><subject>Co-expression</subject><subject>Computational biology</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Gene expression</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genetic regulation</subject><subject>Humans</subject><subject>Medical research</subject><subject>Neoplasms - therapy</subject><subject>Network analysis</subject><subject>Osteosarcoma</subject><subject>Osteosarcoma - genetics</subject><subject>Osteosarcoma - pathology</subject><subject>Precision medicine</subject><subject>Precision Medicine - methods</subject><subject>Proteins</subject><subject>Software</subject><subject>Software tools</subject><subject>Survival Analysis</subject><subject>Transcriptome</subject><issn>1471-2407</issn><issn>1471-2407</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkt-L1DAQx4so3nn6B_giC4LoQ9ekzSSpD8Jx-GPhQFjvPUzTaTdnt1mT1h__vVl7HluQPMww-cyX4TuTZc85W3Ou5dvIC60hZ7zKZVFCrh5k51wonheCqYcn-Vn2JMZbxrjSTD_OzkouoSxEeZ6te-cHinH7bhXd0PW0irg_pDDQ-NOHbys3tBRosJSy1fZp9qjFPtKzu3iR3Xz8cHP1Ob_-8mlzdXmdW6jUmAOCrqGtJa9rqaABAbqtpMaW0jhom0poVbYWqKmxBBIaoMSmUhVjIFh5kW1m2cbjrTkEt8fw23h05m_Bh85gGJ3tyTBAhg0pagoStcWqBisZ1wqtBGV50no_ax2mek-NpWEM2C9Elz-D25nO_zBSc0jWJoHXdwLBf58ojmbvoqW-x4H8FE1RskpUXHKZ0Jcz2mEaLVnnk6I94uZSMgFCS3GcaP0fKr2G9s6mdbQu1RcNbxYNiRnp19jhFKPZfN0u2Vcn7I6wH3fR99OY9hyXIJ9BG3yMgdp7Szgzx_My83mZ5IE5npdRqefFqZf3Hf_uqfwD5HnHYg</recordid><startdate>20191025</startdate><enddate>20191025</enddate><creator>Kuijjer, Marieke L</creator><creator>Hsieh, Ping-Han</creator><creator>Quackenbush, John</creator><creator>Glass, Kimberly</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6280-3130</orcidid></search><sort><creationdate>20191025</creationdate><title>lionessR: single sample network inference in R</title><author>Kuijjer, Marieke L ; Hsieh, Ping-Han ; Quackenbush, John ; Glass, Kimberly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-5a58b5fb61bb675d5458f968afe240acd94873fc5edba35e48553ad979005403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Biological networks</topic><topic>Biopsy</topic><topic>Bone cancer</topic><topic>Bone Neoplasms - genetics</topic><topic>Bone Neoplasms - pathology</topic><topic>Co-expression</topic><topic>Computational biology</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Gene expression</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genetic regulation</topic><topic>Humans</topic><topic>Medical research</topic><topic>Neoplasms - therapy</topic><topic>Network analysis</topic><topic>Osteosarcoma</topic><topic>Osteosarcoma - genetics</topic><topic>Osteosarcoma - pathology</topic><topic>Precision medicine</topic><topic>Precision Medicine - methods</topic><topic>Proteins</topic><topic>Software</topic><topic>Software tools</topic><topic>Survival Analysis</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuijjer, Marieke L</creatorcontrib><creatorcontrib>Hsieh, Ping-Han</creatorcontrib><creatorcontrib>Quackenbush, John</creatorcontrib><creatorcontrib>Glass, Kimberly</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>BMC cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuijjer, Marieke L</au><au>Hsieh, Ping-Han</au><au>Quackenbush, John</au><au>Glass, Kimberly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>lionessR: single sample network inference in R</atitle><jtitle>BMC cancer</jtitle><addtitle>BMC Cancer</addtitle><date>2019-10-25</date><risdate>2019</risdate><volume>19</volume><issue>1</issue><spage>1003</spage><epage>6</epage><pages>1003-6</pages><artnum>1003</artnum><issn>1471-2407</issn><eissn>1471-2407</eissn><abstract>In biomedical research, network inference algorithms are typically used to infer complex association patterns between biological entities, such as between genes or proteins, using data from a population. This resulting aggregate network, in essence, averages over the networks of those individuals in the population. LIONESS (Linear Interpolation to Obtain Network Estimates for Single Samples) is a method that can be used together with a network inference algorithm to extract networks for individual samples in a population. The method's key characteristic is that, by modeling networks for individual samples in a data set, it can capture network heterogeneity in a population. LIONESS was originally made available as a function within the PANDA (Passing Attributes between Networks for Data Assimilation) regulatory network reconstruction framework. However, the LIONESS algorithm is generalizable and can be used to model single sample networks based on a wide range of network inference algorithms. In this software article, we describe lionessR, an R implementation of LIONESS that can be applied to any network inference method in R that outputs a complete, weighted adjacency matrix. As an example, we provide a vignette of an application of lionessR to model single sample networks based on correlated gene expression in a bone cancer dataset. We show how the tool can be used to identify differential patterns of correlation between two groups of patients. We developed lionessR, an open source R package to model single sample networks. We show how lionessR can be used to inform us on potential precision medicine applications in cancer. The lionessR package is a user-friendly tool to perform such analyses. The package, which includes a vignette describing the application, is freely available at: https://github.com/kuijjerlab/lionessR and at: http://bioconductor.org/packages/lionessR .</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>31653243</pmid><doi>10.1186/s12885-019-6235-7</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6280-3130</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2407
ispartof BMC cancer, 2019-10, Vol.19 (1), p.1003-6, Article 1003
issn 1471-2407
1471-2407
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_05a0ade7ed2e4bca9b5c60187ac657c1
source Publicly Available Content (ProQuest); PubMed Central
subjects Algorithms
Biological networks
Biopsy
Bone cancer
Bone Neoplasms - genetics
Bone Neoplasms - pathology
Co-expression
Computational biology
Computational Biology - methods
Computer Simulation
Gene expression
Gene Regulatory Networks
Genes
Genetic regulation
Humans
Medical research
Neoplasms - therapy
Network analysis
Osteosarcoma
Osteosarcoma - genetics
Osteosarcoma - pathology
Precision medicine
Precision Medicine - methods
Proteins
Software
Software tools
Survival Analysis
Transcriptome
title lionessR: single sample network inference in R
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=lionessR:%20single%20sample%20network%20inference%20in%20R&rft.jtitle=BMC%20cancer&rft.au=Kuijjer,%20Marieke%20L&rft.date=2019-10-25&rft.volume=19&rft.issue=1&rft.spage=1003&rft.epage=6&rft.pages=1003-6&rft.artnum=1003&rft.issn=1471-2407&rft.eissn=1471-2407&rft_id=info:doi/10.1186/s12885-019-6235-7&rft_dat=%3Cgale_doaj_%3EA604548641%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c597t-5a58b5fb61bb675d5458f968afe240acd94873fc5edba35e48553ad979005403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2309491616&rft_id=info:pmid/31653243&rft_galeid=A604548641&rfr_iscdi=true