Loading…
Distance Measures between the Interval-Valued Complex Fuzzy Sets
Complex fuzzy set (CFS) is a recent development in the field of fuzzy set (FS) theory. The significance of CFS lies in the fact that CFS assigned membership grades from a unit circle in the complex plane, i.e., in the form of a complex number whose amplitude term belongs to a [ 0 , 1 ] interval. The...
Saved in:
Published in: | Mathematics (Basel) 2019-06, Vol.7 (6), p.549 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-1aef7ecfe71e0cee5bcb1b909ff3cee2850a3993d507a8738ff8d8697e4f9eb33 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-1aef7ecfe71e0cee5bcb1b909ff3cee2850a3993d507a8738ff8d8697e4f9eb33 |
container_end_page | |
container_issue | 6 |
container_start_page | 549 |
container_title | Mathematics (Basel) |
container_volume | 7 |
creator | Dai, Songsong Bi, Lvqing Hu, Bo |
description | Complex fuzzy set (CFS) is a recent development in the field of fuzzy set (FS) theory. The significance of CFS lies in the fact that CFS assigned membership grades from a unit circle in the complex plane, i.e., in the form of a complex number whose amplitude term belongs to a [ 0 , 1 ] interval. The interval-valued complex fuzzy set (IVCFS) is one of the extensions of the CFS in which the amplitude term is extended from the real numbers to the interval-valued numbers. The novelty of IVCFS lies in its larger range comparative to CFS. We often use fuzzy distance measures to solve some problems in our daily life. Hence, this paper develops some series of distance measures between IVCFSs by using Hamming and Euclidean metrics. The boundaries of these distance measures for IVCFSs are obtained. Finally, we study two geometric properties include rotational invariance and reflectional invariance of these distance measures. |
doi_str_mv | 10.3390/math7060549 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_05b168841fd947c788e62b0d97f17f3c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_05b168841fd947c788e62b0d97f17f3c</doaj_id><sourcerecordid>2548639189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-1aef7ecfe71e0cee5bcb1b909ff3cee2850a3993d507a8738ff8d8697e4f9eb33</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKUnfiASRxSwYye2b6BCIVIRBx5Xy3bWNFWaFNsB2q8nUIS6l90djWZGg9ApwReUSny50nHBcYFzJg_QKMsynvIBP9y7j9EkhCUeRhIqmByhq5s6RN1aSB5Ah95DSAzET4A2iQtIyjaC_9BN-qqbHqpk2q3WDXwls3673SRPEMMJOnK6CTD522P0Mrt9nt6n88e7cno9Ty0tWEyJBsfBOuAEsAXIjTXESCydo8ObiRxrKiWtcsy14FQ4JypRSA7MSTCUjlG50606vVRrX6-036hO1-oX6Pyb0j7WtgGFc0MKIRhxlWTcciGgyAyuJHeED3aD1tlOa-279x5CVMuu9-0QX2U5EwWVRMiBdb5jWd-F4MH9uxKsfhpXe43Tb-xRc2E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548639189</pqid></control><display><type>article</type><title>Distance Measures between the Interval-Valued Complex Fuzzy Sets</title><source>Publicly Available Content Database</source><creator>Dai, Songsong ; Bi, Lvqing ; Hu, Bo</creator><creatorcontrib>Dai, Songsong ; Bi, Lvqing ; Hu, Bo</creatorcontrib><description>Complex fuzzy set (CFS) is a recent development in the field of fuzzy set (FS) theory. The significance of CFS lies in the fact that CFS assigned membership grades from a unit circle in the complex plane, i.e., in the form of a complex number whose amplitude term belongs to a [ 0 , 1 ] interval. The interval-valued complex fuzzy set (IVCFS) is one of the extensions of the CFS in which the amplitude term is extended from the real numbers to the interval-valued numbers. The novelty of IVCFS lies in its larger range comparative to CFS. We often use fuzzy distance measures to solve some problems in our daily life. Hence, this paper develops some series of distance measures between IVCFSs by using Hamming and Euclidean metrics. The boundaries of these distance measures for IVCFSs are obtained. Finally, we study two geometric properties include rotational invariance and reflectional invariance of these distance measures.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math7060549</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amplitudes ; Complex numbers ; Decision making ; Distance measurement ; distance measures ; Euclidean geometry ; Fuzzy sets ; Interval-valued complex fuzzy sets ; Invariance ; Mathematics ; Real numbers ; reflectional invariance ; rotational invariance</subject><ispartof>Mathematics (Basel), 2019-06, Vol.7 (6), p.549</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-1aef7ecfe71e0cee5bcb1b909ff3cee2850a3993d507a8738ff8d8697e4f9eb33</citedby><cites>FETCH-LOGICAL-c364t-1aef7ecfe71e0cee5bcb1b909ff3cee2850a3993d507a8738ff8d8697e4f9eb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548639189/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548639189?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Dai, Songsong</creatorcontrib><creatorcontrib>Bi, Lvqing</creatorcontrib><creatorcontrib>Hu, Bo</creatorcontrib><title>Distance Measures between the Interval-Valued Complex Fuzzy Sets</title><title>Mathematics (Basel)</title><description>Complex fuzzy set (CFS) is a recent development in the field of fuzzy set (FS) theory. The significance of CFS lies in the fact that CFS assigned membership grades from a unit circle in the complex plane, i.e., in the form of a complex number whose amplitude term belongs to a [ 0 , 1 ] interval. The interval-valued complex fuzzy set (IVCFS) is one of the extensions of the CFS in which the amplitude term is extended from the real numbers to the interval-valued numbers. The novelty of IVCFS lies in its larger range comparative to CFS. We often use fuzzy distance measures to solve some problems in our daily life. Hence, this paper develops some series of distance measures between IVCFSs by using Hamming and Euclidean metrics. The boundaries of these distance measures for IVCFSs are obtained. Finally, we study two geometric properties include rotational invariance and reflectional invariance of these distance measures.</description><subject>Amplitudes</subject><subject>Complex numbers</subject><subject>Decision making</subject><subject>Distance measurement</subject><subject>distance measures</subject><subject>Euclidean geometry</subject><subject>Fuzzy sets</subject><subject>Interval-valued complex fuzzy sets</subject><subject>Invariance</subject><subject>Mathematics</subject><subject>Real numbers</subject><subject>reflectional invariance</subject><subject>rotational invariance</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwzAQtBBIVKUnfiASRxSwYye2b6BCIVIRBx5Xy3bWNFWaFNsB2q8nUIS6l90djWZGg9ApwReUSny50nHBcYFzJg_QKMsynvIBP9y7j9EkhCUeRhIqmByhq5s6RN1aSB5Ah95DSAzET4A2iQtIyjaC_9BN-qqbHqpk2q3WDXwls3673SRPEMMJOnK6CTD522P0Mrt9nt6n88e7cno9Ty0tWEyJBsfBOuAEsAXIjTXESCydo8ObiRxrKiWtcsy14FQ4JypRSA7MSTCUjlG50606vVRrX6-036hO1-oX6Pyb0j7WtgGFc0MKIRhxlWTcciGgyAyuJHeED3aD1tlOa-279x5CVMuu9-0QX2U5EwWVRMiBdb5jWd-F4MH9uxKsfhpXe43Tb-xRc2E</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Dai, Songsong</creator><creator>Bi, Lvqing</creator><creator>Hu, Bo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20190601</creationdate><title>Distance Measures between the Interval-Valued Complex Fuzzy Sets</title><author>Dai, Songsong ; Bi, Lvqing ; Hu, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-1aef7ecfe71e0cee5bcb1b909ff3cee2850a3993d507a8738ff8d8697e4f9eb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplitudes</topic><topic>Complex numbers</topic><topic>Decision making</topic><topic>Distance measurement</topic><topic>distance measures</topic><topic>Euclidean geometry</topic><topic>Fuzzy sets</topic><topic>Interval-valued complex fuzzy sets</topic><topic>Invariance</topic><topic>Mathematics</topic><topic>Real numbers</topic><topic>reflectional invariance</topic><topic>rotational invariance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Songsong</creatorcontrib><creatorcontrib>Bi, Lvqing</creatorcontrib><creatorcontrib>Hu, Bo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Songsong</au><au>Bi, Lvqing</au><au>Hu, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distance Measures between the Interval-Valued Complex Fuzzy Sets</atitle><jtitle>Mathematics (Basel)</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>7</volume><issue>6</issue><spage>549</spage><pages>549-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Complex fuzzy set (CFS) is a recent development in the field of fuzzy set (FS) theory. The significance of CFS lies in the fact that CFS assigned membership grades from a unit circle in the complex plane, i.e., in the form of a complex number whose amplitude term belongs to a [ 0 , 1 ] interval. The interval-valued complex fuzzy set (IVCFS) is one of the extensions of the CFS in which the amplitude term is extended from the real numbers to the interval-valued numbers. The novelty of IVCFS lies in its larger range comparative to CFS. We often use fuzzy distance measures to solve some problems in our daily life. Hence, this paper develops some series of distance measures between IVCFSs by using Hamming and Euclidean metrics. The boundaries of these distance measures for IVCFSs are obtained. Finally, we study two geometric properties include rotational invariance and reflectional invariance of these distance measures.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math7060549</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2019-06, Vol.7 (6), p.549 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_05b168841fd947c788e62b0d97f17f3c |
source | Publicly Available Content Database |
subjects | Amplitudes Complex numbers Decision making Distance measurement distance measures Euclidean geometry Fuzzy sets Interval-valued complex fuzzy sets Invariance Mathematics Real numbers reflectional invariance rotational invariance |
title | Distance Measures between the Interval-Valued Complex Fuzzy Sets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distance%20Measures%20between%20the%20Interval-Valued%20Complex%20Fuzzy%20Sets&rft.jtitle=Mathematics%20(Basel)&rft.au=Dai,%20Songsong&rft.date=2019-06-01&rft.volume=7&rft.issue=6&rft.spage=549&rft.pages=549-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math7060549&rft_dat=%3Cproquest_doaj_%3E2548639189%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-1aef7ecfe71e0cee5bcb1b909ff3cee2850a3993d507a8738ff8d8697e4f9eb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548639189&rft_id=info:pmid/&rfr_iscdi=true |