Loading…

Distance Measures between the Interval-Valued Complex Fuzzy Sets

Complex fuzzy set (CFS) is a recent development in the field of fuzzy set (FS) theory. The significance of CFS lies in the fact that CFS assigned membership grades from a unit circle in the complex plane, i.e., in the form of a complex number whose amplitude term belongs to a [ 0 , 1 ] interval. The...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2019-06, Vol.7 (6), p.549
Main Authors: Dai, Songsong, Bi, Lvqing, Hu, Bo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-1aef7ecfe71e0cee5bcb1b909ff3cee2850a3993d507a8738ff8d8697e4f9eb33
cites cdi_FETCH-LOGICAL-c364t-1aef7ecfe71e0cee5bcb1b909ff3cee2850a3993d507a8738ff8d8697e4f9eb33
container_end_page
container_issue 6
container_start_page 549
container_title Mathematics (Basel)
container_volume 7
creator Dai, Songsong
Bi, Lvqing
Hu, Bo
description Complex fuzzy set (CFS) is a recent development in the field of fuzzy set (FS) theory. The significance of CFS lies in the fact that CFS assigned membership grades from a unit circle in the complex plane, i.e., in the form of a complex number whose amplitude term belongs to a [ 0 , 1 ] interval. The interval-valued complex fuzzy set (IVCFS) is one of the extensions of the CFS in which the amplitude term is extended from the real numbers to the interval-valued numbers. The novelty of IVCFS lies in its larger range comparative to CFS. We often use fuzzy distance measures to solve some problems in our daily life. Hence, this paper develops some series of distance measures between IVCFSs by using Hamming and Euclidean metrics. The boundaries of these distance measures for IVCFSs are obtained. Finally, we study two geometric properties include rotational invariance and reflectional invariance of these distance measures.
doi_str_mv 10.3390/math7060549
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_05b168841fd947c788e62b0d97f17f3c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_05b168841fd947c788e62b0d97f17f3c</doaj_id><sourcerecordid>2548639189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-1aef7ecfe71e0cee5bcb1b909ff3cee2850a3993d507a8738ff8d8697e4f9eb33</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKUnfiASRxSwYye2b6BCIVIRBx5Xy3bWNFWaFNsB2q8nUIS6l90djWZGg9ApwReUSny50nHBcYFzJg_QKMsynvIBP9y7j9EkhCUeRhIqmByhq5s6RN1aSB5Ah95DSAzET4A2iQtIyjaC_9BN-qqbHqpk2q3WDXwls3673SRPEMMJOnK6CTD522P0Mrt9nt6n88e7cno9Ty0tWEyJBsfBOuAEsAXIjTXESCydo8ObiRxrKiWtcsy14FQ4JypRSA7MSTCUjlG50606vVRrX6-036hO1-oX6Pyb0j7WtgGFc0MKIRhxlWTcciGgyAyuJHeED3aD1tlOa-279x5CVMuu9-0QX2U5EwWVRMiBdb5jWd-F4MH9uxKsfhpXe43Tb-xRc2E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548639189</pqid></control><display><type>article</type><title>Distance Measures between the Interval-Valued Complex Fuzzy Sets</title><source>Publicly Available Content Database</source><creator>Dai, Songsong ; Bi, Lvqing ; Hu, Bo</creator><creatorcontrib>Dai, Songsong ; Bi, Lvqing ; Hu, Bo</creatorcontrib><description>Complex fuzzy set (CFS) is a recent development in the field of fuzzy set (FS) theory. The significance of CFS lies in the fact that CFS assigned membership grades from a unit circle in the complex plane, i.e., in the form of a complex number whose amplitude term belongs to a [ 0 , 1 ] interval. The interval-valued complex fuzzy set (IVCFS) is one of the extensions of the CFS in which the amplitude term is extended from the real numbers to the interval-valued numbers. The novelty of IVCFS lies in its larger range comparative to CFS. We often use fuzzy distance measures to solve some problems in our daily life. Hence, this paper develops some series of distance measures between IVCFSs by using Hamming and Euclidean metrics. The boundaries of these distance measures for IVCFSs are obtained. Finally, we study two geometric properties include rotational invariance and reflectional invariance of these distance measures.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math7060549</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amplitudes ; Complex numbers ; Decision making ; Distance measurement ; distance measures ; Euclidean geometry ; Fuzzy sets ; Interval-valued complex fuzzy sets ; Invariance ; Mathematics ; Real numbers ; reflectional invariance ; rotational invariance</subject><ispartof>Mathematics (Basel), 2019-06, Vol.7 (6), p.549</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-1aef7ecfe71e0cee5bcb1b909ff3cee2850a3993d507a8738ff8d8697e4f9eb33</citedby><cites>FETCH-LOGICAL-c364t-1aef7ecfe71e0cee5bcb1b909ff3cee2850a3993d507a8738ff8d8697e4f9eb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548639189/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548639189?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Dai, Songsong</creatorcontrib><creatorcontrib>Bi, Lvqing</creatorcontrib><creatorcontrib>Hu, Bo</creatorcontrib><title>Distance Measures between the Interval-Valued Complex Fuzzy Sets</title><title>Mathematics (Basel)</title><description>Complex fuzzy set (CFS) is a recent development in the field of fuzzy set (FS) theory. The significance of CFS lies in the fact that CFS assigned membership grades from a unit circle in the complex plane, i.e., in the form of a complex number whose amplitude term belongs to a [ 0 , 1 ] interval. The interval-valued complex fuzzy set (IVCFS) is one of the extensions of the CFS in which the amplitude term is extended from the real numbers to the interval-valued numbers. The novelty of IVCFS lies in its larger range comparative to CFS. We often use fuzzy distance measures to solve some problems in our daily life. Hence, this paper develops some series of distance measures between IVCFSs by using Hamming and Euclidean metrics. The boundaries of these distance measures for IVCFSs are obtained. Finally, we study two geometric properties include rotational invariance and reflectional invariance of these distance measures.</description><subject>Amplitudes</subject><subject>Complex numbers</subject><subject>Decision making</subject><subject>Distance measurement</subject><subject>distance measures</subject><subject>Euclidean geometry</subject><subject>Fuzzy sets</subject><subject>Interval-valued complex fuzzy sets</subject><subject>Invariance</subject><subject>Mathematics</subject><subject>Real numbers</subject><subject>reflectional invariance</subject><subject>rotational invariance</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwzAQtBBIVKUnfiASRxSwYye2b6BCIVIRBx5Xy3bWNFWaFNsB2q8nUIS6l90djWZGg9ApwReUSny50nHBcYFzJg_QKMsynvIBP9y7j9EkhCUeRhIqmByhq5s6RN1aSB5Ah95DSAzET4A2iQtIyjaC_9BN-qqbHqpk2q3WDXwls3673SRPEMMJOnK6CTD522P0Mrt9nt6n88e7cno9Ty0tWEyJBsfBOuAEsAXIjTXESCydo8ObiRxrKiWtcsy14FQ4JypRSA7MSTCUjlG50606vVRrX6-036hO1-oX6Pyb0j7WtgGFc0MKIRhxlWTcciGgyAyuJHeED3aD1tlOa-279x5CVMuu9-0QX2U5EwWVRMiBdb5jWd-F4MH9uxKsfhpXe43Tb-xRc2E</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Dai, Songsong</creator><creator>Bi, Lvqing</creator><creator>Hu, Bo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20190601</creationdate><title>Distance Measures between the Interval-Valued Complex Fuzzy Sets</title><author>Dai, Songsong ; Bi, Lvqing ; Hu, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-1aef7ecfe71e0cee5bcb1b909ff3cee2850a3993d507a8738ff8d8697e4f9eb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplitudes</topic><topic>Complex numbers</topic><topic>Decision making</topic><topic>Distance measurement</topic><topic>distance measures</topic><topic>Euclidean geometry</topic><topic>Fuzzy sets</topic><topic>Interval-valued complex fuzzy sets</topic><topic>Invariance</topic><topic>Mathematics</topic><topic>Real numbers</topic><topic>reflectional invariance</topic><topic>rotational invariance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Songsong</creatorcontrib><creatorcontrib>Bi, Lvqing</creatorcontrib><creatorcontrib>Hu, Bo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Songsong</au><au>Bi, Lvqing</au><au>Hu, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distance Measures between the Interval-Valued Complex Fuzzy Sets</atitle><jtitle>Mathematics (Basel)</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>7</volume><issue>6</issue><spage>549</spage><pages>549-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Complex fuzzy set (CFS) is a recent development in the field of fuzzy set (FS) theory. The significance of CFS lies in the fact that CFS assigned membership grades from a unit circle in the complex plane, i.e., in the form of a complex number whose amplitude term belongs to a [ 0 , 1 ] interval. The interval-valued complex fuzzy set (IVCFS) is one of the extensions of the CFS in which the amplitude term is extended from the real numbers to the interval-valued numbers. The novelty of IVCFS lies in its larger range comparative to CFS. We often use fuzzy distance measures to solve some problems in our daily life. Hence, this paper develops some series of distance measures between IVCFSs by using Hamming and Euclidean metrics. The boundaries of these distance measures for IVCFSs are obtained. Finally, we study two geometric properties include rotational invariance and reflectional invariance of these distance measures.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math7060549</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2019-06, Vol.7 (6), p.549
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_05b168841fd947c788e62b0d97f17f3c
source Publicly Available Content Database
subjects Amplitudes
Complex numbers
Decision making
Distance measurement
distance measures
Euclidean geometry
Fuzzy sets
Interval-valued complex fuzzy sets
Invariance
Mathematics
Real numbers
reflectional invariance
rotational invariance
title Distance Measures between the Interval-Valued Complex Fuzzy Sets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distance%20Measures%20between%20the%20Interval-Valued%20Complex%20Fuzzy%20Sets&rft.jtitle=Mathematics%20(Basel)&rft.au=Dai,%20Songsong&rft.date=2019-06-01&rft.volume=7&rft.issue=6&rft.spage=549&rft.pages=549-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math7060549&rft_dat=%3Cproquest_doaj_%3E2548639189%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-1aef7ecfe71e0cee5bcb1b909ff3cee2850a3993d507a8738ff8d8697e4f9eb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548639189&rft_id=info:pmid/&rfr_iscdi=true