Loading…
Thermal conductivity of plasma modified polyethylene terephthalate and polyamide-6 layers
Tribological performance of the materials greatly depends on the temperature of the contacting zones and surfaces and hence on the heat conducting behaviour of the materials. Heat conduction of polymers is, however, greatly affected even by a very narrow (few tens of nm) modified layer formed on the...
Saved in:
Published in: | Express polymer letters 2016-05, Vol.10 (5), p.373-380 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tribological performance of the materials greatly depends on the temperature of the contacting zones and surfaces and hence on the heat conducting behaviour of the materials. Heat conduction of polymers is, however, greatly affected even by a very narrow (few tens of nm) modified layer formed on the surface after subjecting the polymer to plasma treatment. In this article the heat flow inhibiting properties of plasma modified surface layers were investigated on polyethylene terephthalate (PET) and polyamide-6 (PA6) engineering polymers. Nitrogen Plasma Immersion Ion Implantation gave rise to compositional and structural changes of the polymers in a depth of 110 nm. It was found that even this thin layer exhibited significant heat flow inhibiting effect. The modified layer considerably decreased the thermal conductivity coefficient of the treated polymer and resulted in a reduced heat transmission for PET and PA6 by 33 and 28%, respectively. This new information supports and is in accordance with the former tribological results about extra friction heat generation experienced under NPIII surface layer of PA6 and PET during dry sliding. |
---|---|
ISSN: | 1788-618X 1788-618X |
DOI: | 10.3144/expresspolymlett.2016.35 |