Loading…

Blind spectral unmixing for characterization of plaque composition based on multispectral photoacoustic imaging

To improve the assessment of carotid plaque vulnerability, a comprehensive characterization of their composition is paramount. Multispectral photoacoustic imaging (MSPAI) can provide plaque composition based on their absorption spectra. However, although various spectral unmixing methods have been d...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2023-03, Vol.13 (1), p.4119-4119, Article 4119
Main Authors: Cano, Camilo, Matos, Catarina, Gholampour, Amir, van Sambeek, Marc, Lopata, Richard, Wu, Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-ebcb7f3ecceb087f15681309a62522bb26225ef2088ab381347a915f96dbbf193
cites cdi_FETCH-LOGICAL-c541t-ebcb7f3ecceb087f15681309a62522bb26225ef2088ab381347a915f96dbbf193
container_end_page 4119
container_issue 1
container_start_page 4119
container_title Scientific reports
container_volume 13
creator Cano, Camilo
Matos, Catarina
Gholampour, Amir
van Sambeek, Marc
Lopata, Richard
Wu, Min
description To improve the assessment of carotid plaque vulnerability, a comprehensive characterization of their composition is paramount. Multispectral photoacoustic imaging (MSPAI) can provide plaque composition based on their absorption spectra. However, although various spectral unmixing methods have been developed to characterize different tissue constituents, plaque analysis remains a challenge since its composition is highly complex and diverse. In this study, we employed an adapted piecewise convex multiple-model endmember detection method to identify carotid plaque constituents. Additionally, we explore the selection of the imaging wavelengths in linear models by conditioning the coefficient matrix and its synergy with our unmixing approach. We verified our method using plaque mimicking phantoms and performed ex-vivo MSPAI on carotid endarterectomy samples in a spectral range from 500 to 1300 nm to identify the main spectral features of plaque materials for vulnerability assessment. After imaging, the samples were processed for histological analysis to validate the photoacoustic decomposition. Results show that our approach can perform spectral unmixing and classification of highly heterogeneous biological samples without requiring an extensive fluence correction, enabling the identification of relevant components to assess plaque vulnerability.
doi_str_mv 10.1038/s41598-023-31343-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_060f557356f14f83b0e7541de522d55c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_060f557356f14f83b0e7541de522d55c</doaj_id><sourcerecordid>2786375398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-ebcb7f3ecceb087f15681309a62522bb26225ef2088ab381347a915f96dbbf193</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEolXpC7BAkdiwCfgSx_YKQcWlUiU2sLZsx854lNjBThDD03M6KUPLAm9snfP7Oxf9VfUco9cYUfGmtJhJ0SBCG4ppS5vDo-qcoJY1hBLy-N77rLosZY_gMCJbLJ9WZ7STuOWYn1fp_RhiX5fZ2SXrsV7jFH6GONQ-5drudNZ2cTn80ktIsU6-nkf9fXW1TdOcSjhGjS6ur-ExreMSTqh5l5akbVrLEmwdJj0A91n1xOuxuMu7-6L69vHD16vPzc2XT9dX724ay1q8NM5Ywz111jqDBPeYdQJTJHVHGCHGkI4Q5jxBQmhDIdVyLTHzsuuN8VjSi-p64_ZJ79WcoXw-qKSDOgZSHpTO0NfoFOqQZ4xT1nncekENchya6B1U6hmzwHq7sebVTK63Lt7O9wD6MBPDTg3ph8IIYcw4AsKrO0JOsL2yqCkU68ZRRwf7UYQLmA8xRkD68h_pPq05wq6OKsoZlQJUZFPZnErJzp-6wUjd-kNt_lDgD3X0hzrApxf35zh9-eMGENBNUCAVB5f_1v4P9jecoshz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786375398</pqid></control><display><type>article</type><title>Blind spectral unmixing for characterization of plaque composition based on multispectral photoacoustic imaging</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Cano, Camilo ; Matos, Catarina ; Gholampour, Amir ; van Sambeek, Marc ; Lopata, Richard ; Wu, Min</creator><creatorcontrib>Cano, Camilo ; Matos, Catarina ; Gholampour, Amir ; van Sambeek, Marc ; Lopata, Richard ; Wu, Min</creatorcontrib><description>To improve the assessment of carotid plaque vulnerability, a comprehensive characterization of their composition is paramount. Multispectral photoacoustic imaging (MSPAI) can provide plaque composition based on their absorption spectra. However, although various spectral unmixing methods have been developed to characterize different tissue constituents, plaque analysis remains a challenge since its composition is highly complex and diverse. In this study, we employed an adapted piecewise convex multiple-model endmember detection method to identify carotid plaque constituents. Additionally, we explore the selection of the imaging wavelengths in linear models by conditioning the coefficient matrix and its synergy with our unmixing approach. We verified our method using plaque mimicking phantoms and performed ex-vivo MSPAI on carotid endarterectomy samples in a spectral range from 500 to 1300 nm to identify the main spectral features of plaque materials for vulnerability assessment. After imaging, the samples were processed for histological analysis to validate the photoacoustic decomposition. Results show that our approach can perform spectral unmixing and classification of highly heterogeneous biological samples without requiring an extensive fluence correction, enabling the identification of relevant components to assess plaque vulnerability.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-023-31343-y</identifier><identifier>PMID: 36914717</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/985 ; 692/700/1421 ; Biological samples ; Carotid Arteries - diagnostic imaging ; Carotid Arteries - pathology ; Diagnostic Imaging ; Hemorrhage ; Histology ; Humanities and Social Sciences ; Humans ; Lipids ; multidisciplinary ; Photoacoustic Techniques - methods ; Plaque, Atherosclerotic - diagnostic imaging ; Plaque, Atherosclerotic - pathology ; Science ; Science (multidisciplinary) ; Spectrum analysis ; Spectrum Analysis - methods ; Surgery ; Tissues ; Wavelengths</subject><ispartof>Scientific reports, 2023-03, Vol.13 (1), p.4119-4119, Article 4119</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-ebcb7f3ecceb087f15681309a62522bb26225ef2088ab381347a915f96dbbf193</citedby><cites>FETCH-LOGICAL-c541t-ebcb7f3ecceb087f15681309a62522bb26225ef2088ab381347a915f96dbbf193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2786375398/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2786375398?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36914717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cano, Camilo</creatorcontrib><creatorcontrib>Matos, Catarina</creatorcontrib><creatorcontrib>Gholampour, Amir</creatorcontrib><creatorcontrib>van Sambeek, Marc</creatorcontrib><creatorcontrib>Lopata, Richard</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><title>Blind spectral unmixing for characterization of plaque composition based on multispectral photoacoustic imaging</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>To improve the assessment of carotid plaque vulnerability, a comprehensive characterization of their composition is paramount. Multispectral photoacoustic imaging (MSPAI) can provide plaque composition based on their absorption spectra. However, although various spectral unmixing methods have been developed to characterize different tissue constituents, plaque analysis remains a challenge since its composition is highly complex and diverse. In this study, we employed an adapted piecewise convex multiple-model endmember detection method to identify carotid plaque constituents. Additionally, we explore the selection of the imaging wavelengths in linear models by conditioning the coefficient matrix and its synergy with our unmixing approach. We verified our method using plaque mimicking phantoms and performed ex-vivo MSPAI on carotid endarterectomy samples in a spectral range from 500 to 1300 nm to identify the main spectral features of plaque materials for vulnerability assessment. After imaging, the samples were processed for histological analysis to validate the photoacoustic decomposition. Results show that our approach can perform spectral unmixing and classification of highly heterogeneous biological samples without requiring an extensive fluence correction, enabling the identification of relevant components to assess plaque vulnerability.</description><subject>639/166/985</subject><subject>692/700/1421</subject><subject>Biological samples</subject><subject>Carotid Arteries - diagnostic imaging</subject><subject>Carotid Arteries - pathology</subject><subject>Diagnostic Imaging</subject><subject>Hemorrhage</subject><subject>Histology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lipids</subject><subject>multidisciplinary</subject><subject>Photoacoustic Techniques - methods</subject><subject>Plaque, Atherosclerotic - diagnostic imaging</subject><subject>Plaque, Atherosclerotic - pathology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis - methods</subject><subject>Surgery</subject><subject>Tissues</subject><subject>Wavelengths</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1DAUhiMEolXpC7BAkdiwCfgSx_YKQcWlUiU2sLZsx854lNjBThDD03M6KUPLAm9snfP7Oxf9VfUco9cYUfGmtJhJ0SBCG4ppS5vDo-qcoJY1hBLy-N77rLosZY_gMCJbLJ9WZ7STuOWYn1fp_RhiX5fZ2SXrsV7jFH6GONQ-5drudNZ2cTn80ktIsU6-nkf9fXW1TdOcSjhGjS6ur-ExreMSTqh5l5akbVrLEmwdJj0A91n1xOuxuMu7-6L69vHD16vPzc2XT9dX724ay1q8NM5Ywz111jqDBPeYdQJTJHVHGCHGkI4Q5jxBQmhDIdVyLTHzsuuN8VjSi-p64_ZJ79WcoXw-qKSDOgZSHpTO0NfoFOqQZ4xT1nncekENchya6B1U6hmzwHq7sebVTK63Lt7O9wD6MBPDTg3ph8IIYcw4AsKrO0JOsL2yqCkU68ZRRwf7UYQLmA8xRkD68h_pPq05wq6OKsoZlQJUZFPZnErJzp-6wUjd-kNt_lDgD3X0hzrApxf35zh9-eMGENBNUCAVB5f_1v4P9jecoshz</recordid><startdate>20230313</startdate><enddate>20230313</enddate><creator>Cano, Camilo</creator><creator>Matos, Catarina</creator><creator>Gholampour, Amir</creator><creator>van Sambeek, Marc</creator><creator>Lopata, Richard</creator><creator>Wu, Min</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230313</creationdate><title>Blind spectral unmixing for characterization of plaque composition based on multispectral photoacoustic imaging</title><author>Cano, Camilo ; Matos, Catarina ; Gholampour, Amir ; van Sambeek, Marc ; Lopata, Richard ; Wu, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-ebcb7f3ecceb087f15681309a62522bb26225ef2088ab381347a915f96dbbf193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/166/985</topic><topic>692/700/1421</topic><topic>Biological samples</topic><topic>Carotid Arteries - diagnostic imaging</topic><topic>Carotid Arteries - pathology</topic><topic>Diagnostic Imaging</topic><topic>Hemorrhage</topic><topic>Histology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lipids</topic><topic>multidisciplinary</topic><topic>Photoacoustic Techniques - methods</topic><topic>Plaque, Atherosclerotic - diagnostic imaging</topic><topic>Plaque, Atherosclerotic - pathology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis - methods</topic><topic>Surgery</topic><topic>Tissues</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cano, Camilo</creatorcontrib><creatorcontrib>Matos, Catarina</creatorcontrib><creatorcontrib>Gholampour, Amir</creatorcontrib><creatorcontrib>van Sambeek, Marc</creatorcontrib><creatorcontrib>Lopata, Richard</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cano, Camilo</au><au>Matos, Catarina</au><au>Gholampour, Amir</au><au>van Sambeek, Marc</au><au>Lopata, Richard</au><au>Wu, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind spectral unmixing for characterization of plaque composition based on multispectral photoacoustic imaging</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2023-03-13</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>4119</spage><epage>4119</epage><pages>4119-4119</pages><artnum>4119</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>To improve the assessment of carotid plaque vulnerability, a comprehensive characterization of their composition is paramount. Multispectral photoacoustic imaging (MSPAI) can provide plaque composition based on their absorption spectra. However, although various spectral unmixing methods have been developed to characterize different tissue constituents, plaque analysis remains a challenge since its composition is highly complex and diverse. In this study, we employed an adapted piecewise convex multiple-model endmember detection method to identify carotid plaque constituents. Additionally, we explore the selection of the imaging wavelengths in linear models by conditioning the coefficient matrix and its synergy with our unmixing approach. We verified our method using plaque mimicking phantoms and performed ex-vivo MSPAI on carotid endarterectomy samples in a spectral range from 500 to 1300 nm to identify the main spectral features of plaque materials for vulnerability assessment. After imaging, the samples were processed for histological analysis to validate the photoacoustic decomposition. Results show that our approach can perform spectral unmixing and classification of highly heterogeneous biological samples without requiring an extensive fluence correction, enabling the identification of relevant components to assess plaque vulnerability.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36914717</pmid><doi>10.1038/s41598-023-31343-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2023-03, Vol.13 (1), p.4119-4119, Article 4119
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_060f557356f14f83b0e7541de522d55c
source NCBI_PubMed Central(免费); Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166/985
692/700/1421
Biological samples
Carotid Arteries - diagnostic imaging
Carotid Arteries - pathology
Diagnostic Imaging
Hemorrhage
Histology
Humanities and Social Sciences
Humans
Lipids
multidisciplinary
Photoacoustic Techniques - methods
Plaque, Atherosclerotic - diagnostic imaging
Plaque, Atherosclerotic - pathology
Science
Science (multidisciplinary)
Spectrum analysis
Spectrum Analysis - methods
Surgery
Tissues
Wavelengths
title Blind spectral unmixing for characterization of plaque composition based on multispectral photoacoustic imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20spectral%20unmixing%20for%20characterization%20of%20plaque%20composition%20based%20on%20multispectral%20photoacoustic%20imaging&rft.jtitle=Scientific%20reports&rft.au=Cano,%20Camilo&rft.date=2023-03-13&rft.volume=13&rft.issue=1&rft.spage=4119&rft.epage=4119&rft.pages=4119-4119&rft.artnum=4119&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-023-31343-y&rft_dat=%3Cproquest_doaj_%3E2786375398%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-ebcb7f3ecceb087f15681309a62522bb26225ef2088ab381347a915f96dbbf193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2786375398&rft_id=info:pmid/36914717&rfr_iscdi=true