Loading…
Revisiting the Factorization of xn+1 over Finite Fields with Applications
The polynomial xn+1 over finite fields has been of interest due to its applications in the study of negacyclic codes over finite fields. In this paper, a rigorous treatment of the factorization of xn+1 over finite fields is given as well as its applications. Explicit and recursive methods for factor...
Saved in:
Published in: | Journal of mathematics (Hidawi) 2021, Vol.2021 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Journal of mathematics (Hidawi) |
container_volume | 2021 |
creator | Boripan, Arunwan Jitman, Somphong |
description | The polynomial xn+1 over finite fields has been of interest due to its applications in the study of negacyclic codes over finite fields. In this paper, a rigorous treatment of the factorization of xn+1 over finite fields is given as well as its applications. Explicit and recursive methods for factorizing xn+1 over finite fields are provided together with the enumeration formula. As applications, some families of negacyclic codes are revisited with more clear and simpler forms. |
doi_str_mv | 10.1155/2021/6626422 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0612f05525a94a9ab682485ee430fcb2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0612f05525a94a9ab682485ee430fcb2</doaj_id><sourcerecordid>2478357152</sourcerecordid><originalsourceid>FETCH-LOGICAL-d200t-f3d9a617a7d7df85ee6ca58d4bd074446279d591a21903a337eb2712186518393</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWGpv_oCAxxK7O_t9LMVqoSCInpdNdtNuidmYbFv115vY6mmG4eF9hydJbjG6x5ixGSDAM86BU4CLZAQE04wKyS7_dg7qOpl03Q4hhEESqdAoWb24g-989PUmjVuXLk0RQ-u_TfShTkOZftZTnIaDa9Olr33sCe8q26VHH7fpvGkqX_yy3U1yVZqqc5PzHCdvy4fXxVO2fn5cLebrzAJCMSuJVYZjYYQVtpTMOV4YJi3NLRKU9l8KZZnCBrBCxBAiXA4CA5acYUkUGSerU64NZqeb1r-b9ksH4_XvIbQbbdroi8ppxDGUiDFgRlGjTM4l0KGSElQWOfRZd6espg0fe9dFvQv7tu7f19C7I0xgNlDTE7X1tTVH_1-KkR7U60G9PqsnP6f7cmk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478357152</pqid></control><display><type>article</type><title>Revisiting the Factorization of xn+1 over Finite Fields with Applications</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Boripan, Arunwan ; Jitman, Somphong</creator><contributor>Fontana, Marco ; Marco Fontana</contributor><creatorcontrib>Boripan, Arunwan ; Jitman, Somphong ; Fontana, Marco ; Marco Fontana</creatorcontrib><description>The polynomial xn+1 over finite fields has been of interest due to its applications in the study of negacyclic codes over finite fields. In this paper, a rigorous treatment of the factorization of xn+1 over finite fields is given as well as its applications. Explicit and recursive methods for factorizing xn+1 over finite fields are provided together with the enumeration formula. As applications, some families of negacyclic codes are revisited with more clear and simpler forms.</description><identifier>ISSN: 2314-4629</identifier><identifier>EISSN: 2314-4785</identifier><identifier>DOI: 10.1155/2021/6626422</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Binary system ; Codes ; Enumeration ; Factorization ; Fields (mathematics) ; Mathematics ; Polynomials ; Recursive methods</subject><ispartof>Journal of mathematics (Hidawi), 2021, Vol.2021</ispartof><rights>Copyright © 2021 Arunwan Boripan and Somphong Jitman.</rights><rights>Copyright © 2021 Arunwan Boripan and Somphong Jitman. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0210-536X ; 0000-0003-1076-0866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2478357152/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2478357152?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Fontana, Marco</contributor><contributor>Marco Fontana</contributor><creatorcontrib>Boripan, Arunwan</creatorcontrib><creatorcontrib>Jitman, Somphong</creatorcontrib><title>Revisiting the Factorization of xn+1 over Finite Fields with Applications</title><title>Journal of mathematics (Hidawi)</title><description>The polynomial xn+1 over finite fields has been of interest due to its applications in the study of negacyclic codes over finite fields. In this paper, a rigorous treatment of the factorization of xn+1 over finite fields is given as well as its applications. Explicit and recursive methods for factorizing xn+1 over finite fields are provided together with the enumeration formula. As applications, some families of negacyclic codes are revisited with more clear and simpler forms.</description><subject>Binary system</subject><subject>Codes</subject><subject>Enumeration</subject><subject>Factorization</subject><subject>Fields (mathematics)</subject><subject>Mathematics</subject><subject>Polynomials</subject><subject>Recursive methods</subject><issn>2314-4629</issn><issn>2314-4785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNo9kE1Lw0AQhoMoWGpv_oCAxxK7O_t9LMVqoSCInpdNdtNuidmYbFv115vY6mmG4eF9hydJbjG6x5ixGSDAM86BU4CLZAQE04wKyS7_dg7qOpl03Q4hhEESqdAoWb24g-989PUmjVuXLk0RQ-u_TfShTkOZftZTnIaDa9Olr33sCe8q26VHH7fpvGkqX_yy3U1yVZqqc5PzHCdvy4fXxVO2fn5cLebrzAJCMSuJVYZjYYQVtpTMOV4YJi3NLRKU9l8KZZnCBrBCxBAiXA4CA5acYUkUGSerU64NZqeb1r-b9ksH4_XvIbQbbdroi8ppxDGUiDFgRlGjTM4l0KGSElQWOfRZd6espg0fe9dFvQv7tu7f19C7I0xgNlDTE7X1tTVH_1-KkR7U60G9PqsnP6f7cmk</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Boripan, Arunwan</creator><creator>Jitman, Somphong</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0210-536X</orcidid><orcidid>https://orcid.org/0000-0003-1076-0866</orcidid></search><sort><creationdate>2021</creationdate><title>Revisiting the Factorization of xn+1 over Finite Fields with Applications</title><author>Boripan, Arunwan ; Jitman, Somphong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d200t-f3d9a617a7d7df85ee6ca58d4bd074446279d591a21903a337eb2712186518393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binary system</topic><topic>Codes</topic><topic>Enumeration</topic><topic>Factorization</topic><topic>Fields (mathematics)</topic><topic>Mathematics</topic><topic>Polynomials</topic><topic>Recursive methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boripan, Arunwan</creatorcontrib><creatorcontrib>Jitman, Somphong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of mathematics (Hidawi)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boripan, Arunwan</au><au>Jitman, Somphong</au><au>Fontana, Marco</au><au>Marco Fontana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the Factorization of xn+1 over Finite Fields with Applications</atitle><jtitle>Journal of mathematics (Hidawi)</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issn>2314-4629</issn><eissn>2314-4785</eissn><abstract>The polynomial xn+1 over finite fields has been of interest due to its applications in the study of negacyclic codes over finite fields. In this paper, a rigorous treatment of the factorization of xn+1 over finite fields is given as well as its applications. Explicit and recursive methods for factorizing xn+1 over finite fields are provided together with the enumeration formula. As applications, some families of negacyclic codes are revisited with more clear and simpler forms.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2021/6626422</doi><orcidid>https://orcid.org/0000-0003-0210-536X</orcidid><orcidid>https://orcid.org/0000-0003-1076-0866</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-4629 |
ispartof | Journal of mathematics (Hidawi), 2021, Vol.2021 |
issn | 2314-4629 2314-4785 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0612f05525a94a9ab682485ee430fcb2 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Binary system Codes Enumeration Factorization Fields (mathematics) Mathematics Polynomials Recursive methods |
title | Revisiting the Factorization of xn+1 over Finite Fields with Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20Factorization%20of%20xn+1%20over%20Finite%20Fields%20with%20Applications&rft.jtitle=Journal%20of%20mathematics%20(Hidawi)&rft.au=Boripan,%20Arunwan&rft.date=2021&rft.volume=2021&rft.issn=2314-4629&rft.eissn=2314-4785&rft_id=info:doi/10.1155/2021/6626422&rft_dat=%3Cproquest_doaj_%3E2478357152%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d200t-f3d9a617a7d7df85ee6ca58d4bd074446279d591a21903a337eb2712186518393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2478357152&rft_id=info:pmid/&rfr_iscdi=true |