Loading…

Revisiting the Factorization of xn+1 over Finite Fields with Applications

The polynomial xn+1 over finite fields has been of interest due to its applications in the study of negacyclic codes over finite fields. In this paper, a rigorous treatment of the factorization of xn+1 over finite fields is given as well as its applications. Explicit and recursive methods for factor...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematics (Hidawi) 2021, Vol.2021
Main Authors: Boripan, Arunwan, Jitman, Somphong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title Journal of mathematics (Hidawi)
container_volume 2021
creator Boripan, Arunwan
Jitman, Somphong
description The polynomial xn+1 over finite fields has been of interest due to its applications in the study of negacyclic codes over finite fields. In this paper, a rigorous treatment of the factorization of xn+1 over finite fields is given as well as its applications. Explicit and recursive methods for factorizing xn+1 over finite fields are provided together with the enumeration formula. As applications, some families of negacyclic codes are revisited with more clear and simpler forms.
doi_str_mv 10.1155/2021/6626422
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0612f05525a94a9ab682485ee430fcb2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0612f05525a94a9ab682485ee430fcb2</doaj_id><sourcerecordid>2478357152</sourcerecordid><originalsourceid>FETCH-LOGICAL-d200t-f3d9a617a7d7df85ee6ca58d4bd074446279d591a21903a337eb2712186518393</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWGpv_oCAxxK7O_t9LMVqoSCInpdNdtNuidmYbFv115vY6mmG4eF9hydJbjG6x5ixGSDAM86BU4CLZAQE04wKyS7_dg7qOpl03Q4hhEESqdAoWb24g-989PUmjVuXLk0RQ-u_TfShTkOZftZTnIaDa9Olr33sCe8q26VHH7fpvGkqX_yy3U1yVZqqc5PzHCdvy4fXxVO2fn5cLebrzAJCMSuJVYZjYYQVtpTMOV4YJi3NLRKU9l8KZZnCBrBCxBAiXA4CA5acYUkUGSerU64NZqeb1r-b9ksH4_XvIbQbbdroi8ppxDGUiDFgRlGjTM4l0KGSElQWOfRZd6espg0fe9dFvQv7tu7f19C7I0xgNlDTE7X1tTVH_1-KkR7U60G9PqsnP6f7cmk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478357152</pqid></control><display><type>article</type><title>Revisiting the Factorization of xn+1 over Finite Fields with Applications</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Boripan, Arunwan ; Jitman, Somphong</creator><contributor>Fontana, Marco ; Marco Fontana</contributor><creatorcontrib>Boripan, Arunwan ; Jitman, Somphong ; Fontana, Marco ; Marco Fontana</creatorcontrib><description>The polynomial xn+1 over finite fields has been of interest due to its applications in the study of negacyclic codes over finite fields. In this paper, a rigorous treatment of the factorization of xn+1 over finite fields is given as well as its applications. Explicit and recursive methods for factorizing xn+1 over finite fields are provided together with the enumeration formula. As applications, some families of negacyclic codes are revisited with more clear and simpler forms.</description><identifier>ISSN: 2314-4629</identifier><identifier>EISSN: 2314-4785</identifier><identifier>DOI: 10.1155/2021/6626422</identifier><language>eng</language><publisher>Cairo: Hindawi</publisher><subject>Binary system ; Codes ; Enumeration ; Factorization ; Fields (mathematics) ; Mathematics ; Polynomials ; Recursive methods</subject><ispartof>Journal of mathematics (Hidawi), 2021, Vol.2021</ispartof><rights>Copyright © 2021 Arunwan Boripan and Somphong Jitman.</rights><rights>Copyright © 2021 Arunwan Boripan and Somphong Jitman. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0210-536X ; 0000-0003-1076-0866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2478357152/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2478357152?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Fontana, Marco</contributor><contributor>Marco Fontana</contributor><creatorcontrib>Boripan, Arunwan</creatorcontrib><creatorcontrib>Jitman, Somphong</creatorcontrib><title>Revisiting the Factorization of xn+1 over Finite Fields with Applications</title><title>Journal of mathematics (Hidawi)</title><description>The polynomial xn+1 over finite fields has been of interest due to its applications in the study of negacyclic codes over finite fields. In this paper, a rigorous treatment of the factorization of xn+1 over finite fields is given as well as its applications. Explicit and recursive methods for factorizing xn+1 over finite fields are provided together with the enumeration formula. As applications, some families of negacyclic codes are revisited with more clear and simpler forms.</description><subject>Binary system</subject><subject>Codes</subject><subject>Enumeration</subject><subject>Factorization</subject><subject>Fields (mathematics)</subject><subject>Mathematics</subject><subject>Polynomials</subject><subject>Recursive methods</subject><issn>2314-4629</issn><issn>2314-4785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNo9kE1Lw0AQhoMoWGpv_oCAxxK7O_t9LMVqoSCInpdNdtNuidmYbFv115vY6mmG4eF9hydJbjG6x5ixGSDAM86BU4CLZAQE04wKyS7_dg7qOpl03Q4hhEESqdAoWb24g-989PUmjVuXLk0RQ-u_TfShTkOZftZTnIaDa9Olr33sCe8q26VHH7fpvGkqX_yy3U1yVZqqc5PzHCdvy4fXxVO2fn5cLebrzAJCMSuJVYZjYYQVtpTMOV4YJi3NLRKU9l8KZZnCBrBCxBAiXA4CA5acYUkUGSerU64NZqeb1r-b9ksH4_XvIbQbbdroi8ppxDGUiDFgRlGjTM4l0KGSElQWOfRZd6espg0fe9dFvQv7tu7f19C7I0xgNlDTE7X1tTVH_1-KkR7U60G9PqsnP6f7cmk</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Boripan, Arunwan</creator><creator>Jitman, Somphong</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0210-536X</orcidid><orcidid>https://orcid.org/0000-0003-1076-0866</orcidid></search><sort><creationdate>2021</creationdate><title>Revisiting the Factorization of xn+1 over Finite Fields with Applications</title><author>Boripan, Arunwan ; Jitman, Somphong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d200t-f3d9a617a7d7df85ee6ca58d4bd074446279d591a21903a337eb2712186518393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binary system</topic><topic>Codes</topic><topic>Enumeration</topic><topic>Factorization</topic><topic>Fields (mathematics)</topic><topic>Mathematics</topic><topic>Polynomials</topic><topic>Recursive methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boripan, Arunwan</creatorcontrib><creatorcontrib>Jitman, Somphong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of mathematics (Hidawi)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boripan, Arunwan</au><au>Jitman, Somphong</au><au>Fontana, Marco</au><au>Marco Fontana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the Factorization of xn+1 over Finite Fields with Applications</atitle><jtitle>Journal of mathematics (Hidawi)</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issn>2314-4629</issn><eissn>2314-4785</eissn><abstract>The polynomial xn+1 over finite fields has been of interest due to its applications in the study of negacyclic codes over finite fields. In this paper, a rigorous treatment of the factorization of xn+1 over finite fields is given as well as its applications. Explicit and recursive methods for factorizing xn+1 over finite fields are provided together with the enumeration formula. As applications, some families of negacyclic codes are revisited with more clear and simpler forms.</abstract><cop>Cairo</cop><pub>Hindawi</pub><doi>10.1155/2021/6626422</doi><orcidid>https://orcid.org/0000-0003-0210-536X</orcidid><orcidid>https://orcid.org/0000-0003-1076-0866</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-4629
ispartof Journal of mathematics (Hidawi), 2021, Vol.2021
issn 2314-4629
2314-4785
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0612f05525a94a9ab682485ee430fcb2
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Binary system
Codes
Enumeration
Factorization
Fields (mathematics)
Mathematics
Polynomials
Recursive methods
title Revisiting the Factorization of xn+1 over Finite Fields with Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20Factorization%20of%20xn+1%20over%20Finite%20Fields%20with%20Applications&rft.jtitle=Journal%20of%20mathematics%20(Hidawi)&rft.au=Boripan,%20Arunwan&rft.date=2021&rft.volume=2021&rft.issn=2314-4629&rft.eissn=2314-4785&rft_id=info:doi/10.1155/2021/6626422&rft_dat=%3Cproquest_doaj_%3E2478357152%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d200t-f3d9a617a7d7df85ee6ca58d4bd074446279d591a21903a337eb2712186518393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2478357152&rft_id=info:pmid/&rfr_iscdi=true