Loading…

Taxon-Specific Shifts in Bacterial and Archaeal Transcription of Dissolved Organic Matter Cycling Genes in a Stratified Fjord

A considerable fraction of organic matter derived from photosynthesis in the euphotic zone settles into the ocean's interior and, as it progresses, is degraded by diverse microbial consortia that utilize a suite of extracellular enzymes and membrane transporters. Still, the molecular details th...

Full description

Saved in:
Bibliographic Details
Published in:mSystems 2021-12, Vol.6 (6), p.e0057521-e0057521
Main Authors: Pontiller, Benjamin, Pérez-Martínez, Clara, Bunse, Carina, Osbeck, Christofer M G, González, José M, Lundin, Daniel, Pinhassi, Jarone
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a608t-f26ea7e1b9da5fce0507aa4d716b81c3cf4a7a60eb71ca71f86c18f3f15324e83
cites cdi_FETCH-LOGICAL-a608t-f26ea7e1b9da5fce0507aa4d716b81c3cf4a7a60eb71ca71f86c18f3f15324e83
container_end_page e0057521
container_issue 6
container_start_page e0057521
container_title mSystems
container_volume 6
creator Pontiller, Benjamin
Pérez-Martínez, Clara
Bunse, Carina
Osbeck, Christofer M G
González, José M
Lundin, Daniel
Pinhassi, Jarone
description A considerable fraction of organic matter derived from photosynthesis in the euphotic zone settles into the ocean's interior and, as it progresses, is degraded by diverse microbial consortia that utilize a suite of extracellular enzymes and membrane transporters. Still, the molecular details that regulate carbon cycling across depths remain little explored. As stratification in fjords has made them attractive models to explore patterns in biological oceanography, we here analyzed bacterial and archaeal transcription in samples from five depth layers in the Gullmar Fjord, Sweden. Transcriptional variation over depth correlated with gradients in chlorophyll and nutrient concentrations. Differences in transcription between sampling dates (summer and early autumn) were strongly correlated with ammonium concentrations, which potentially was linked with a stronger influence of (micro-)zooplankton grazing in summer. Transcriptional investment in carbohydrate-active enzymes (CAZymes) decreased with depth and shifted toward peptidases, partly a result of elevated CAZyme transcription by , , and at 2 to 25 m and a dominance of peptidase transcription by and from 50 m down. In particular, CAZymes for chitin, laminarin, and glycogen were important. High levels of transcription of ammonium transporter genes by at depth (up to 18% of total transcription), along with the genes for ammonia oxidation and CO fixation, indicated that chemolithoautotrophy contributed to the carbon flux in the fjord. The taxon-specific expression of functional genes for processing of the marine pool of dissolved organic matter and inorganic nutrients across depths emphasizes the importance of different microbial foraging mechanisms over spatiotemporal scales for shaping biogeochemical cycles. It is generally recognized that stratification in the ocean strongly influences both the community composition and the distribution of ecological functions of microbial communities, which in turn are expected to shape the biogeochemical cycling of essential elements over depth. Here, we used metatranscriptomics analysis to infer molecular detail on the distribution of gene systems central to the utilization of organic matter in a stratified marine system. We thereby uncovered that pronounced shifts in the transcription of genes encoding CAZymes, peptidases, and membrane transporters occurred over depth among key prokaryotic orders. This implies that sequential utilization and transformation of organic mat
doi_str_mv 10.1128/mSystems.00575-21
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_065e0de89e65400cb033d5ae98367f65</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_065e0de89e65400cb033d5ae98367f65</doaj_id><sourcerecordid>2610084097</sourcerecordid><originalsourceid>FETCH-LOGICAL-a608t-f26ea7e1b9da5fce0507aa4d716b81c3cf4a7a60eb71ca71f86c18f3f15324e83</originalsourceid><addsrcrecordid>eNqNks9v0zAUgCMEYtPYH8AFReLCJcV2Etu5II2OjUlDO7RwtV6d59ZVYhc7GfTA_47XbmPlgDj51_e-52e_LHtNyYRSJt_3s20csI8TQmpRF4w-y45ZKZqiJkI8fzI_yk5jXBNCKC8FZc3L7KisGlJJTo6zX3P46V0x26C2xup8trJmiLl1-UfQAwYLXQ6uzc-CXgGmxTyAizrYzWC9y73Jz22MvrvFNr8JS3DJ8QWGFJlPt7qzbplfosOdEfLZEGBIeRJ8sfahfZW9MNBFPL0fT7KvF5_m08_F9c3l1fTsugBO5FAYxhEE0kXTQm00klQWQNUKyheS6lKbCkRCcSGoBkGN5JpKUxpal6xCWZ5kV3tv62GtNsH2ELbKg1W7DR-WCsJgdYeK8BpJi7JBXleE6AUpy7YGbGTJheF1chV7V_yBm3FxYDu33852trEfFSNUMvl_fOdGRQlLhSX-w55PcI-tRpcerTsIOzxxdqWW_lZJLkjFaBK8uxcE_33EOKjeRo1dBw79GBXjlBBZkUYk9O1f6NqPwaWvSBRjjWgIvauY7ikdfIwBzeNlKFF3vageelHtelHtLjHZx0Ds2R_rvwLePC37McVDq5a_AdoJ7PE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622979015</pqid></control><display><type>article</type><title>Taxon-Specific Shifts in Bacterial and Archaeal Transcription of Dissolved Organic Matter Cycling Genes in a Stratified Fjord</title><source>Publicly Available Content Database</source><source>American Society for Microbiology (ASM) Journals</source><source>PubMed Central</source><creator>Pontiller, Benjamin ; Pérez-Martínez, Clara ; Bunse, Carina ; Osbeck, Christofer M G ; González, José M ; Lundin, Daniel ; Pinhassi, Jarone</creator><contributor>Poretsky, Rachel</contributor><creatorcontrib>Pontiller, Benjamin ; Pérez-Martínez, Clara ; Bunse, Carina ; Osbeck, Christofer M G ; González, José M ; Lundin, Daniel ; Pinhassi, Jarone ; Poretsky, Rachel</creatorcontrib><description>A considerable fraction of organic matter derived from photosynthesis in the euphotic zone settles into the ocean's interior and, as it progresses, is degraded by diverse microbial consortia that utilize a suite of extracellular enzymes and membrane transporters. Still, the molecular details that regulate carbon cycling across depths remain little explored. As stratification in fjords has made them attractive models to explore patterns in biological oceanography, we here analyzed bacterial and archaeal transcription in samples from five depth layers in the Gullmar Fjord, Sweden. Transcriptional variation over depth correlated with gradients in chlorophyll and nutrient concentrations. Differences in transcription between sampling dates (summer and early autumn) were strongly correlated with ammonium concentrations, which potentially was linked with a stronger influence of (micro-)zooplankton grazing in summer. Transcriptional investment in carbohydrate-active enzymes (CAZymes) decreased with depth and shifted toward peptidases, partly a result of elevated CAZyme transcription by , , and at 2 to 25 m and a dominance of peptidase transcription by and from 50 m down. In particular, CAZymes for chitin, laminarin, and glycogen were important. High levels of transcription of ammonium transporter genes by at depth (up to 18% of total transcription), along with the genes for ammonia oxidation and CO fixation, indicated that chemolithoautotrophy contributed to the carbon flux in the fjord. The taxon-specific expression of functional genes for processing of the marine pool of dissolved organic matter and inorganic nutrients across depths emphasizes the importance of different microbial foraging mechanisms over spatiotemporal scales for shaping biogeochemical cycles. It is generally recognized that stratification in the ocean strongly influences both the community composition and the distribution of ecological functions of microbial communities, which in turn are expected to shape the biogeochemical cycling of essential elements over depth. Here, we used metatranscriptomics analysis to infer molecular detail on the distribution of gene systems central to the utilization of organic matter in a stratified marine system. We thereby uncovered that pronounced shifts in the transcription of genes encoding CAZymes, peptidases, and membrane transporters occurred over depth among key prokaryotic orders. This implies that sequential utilization and transformation of organic matter through the water column is a key feature that ultimately influences the efficiency of the biological carbon pump.</description><identifier>ISSN: 2379-5077</identifier><identifier>EISSN: 2379-5077</identifier><identifier>DOI: 10.1128/mSystems.00575-21</identifier><identifier>PMID: 34904860</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Akvatisk ekologi ; Ammonia ; Ammonium ; Ammonium transporter ; Aquatic Ecology ; Bacteria ; Biopolymers ; carbohydrate-active enzymes ; Carbon ; Carbon cycle ; Carbon dioxide ; Carbon dioxide fixation ; Chitin ; Chlorophyll ; Cluster analysis ; Community composition ; Cyanobacteria ; dissolved organic carbon ; Dissolved organic matter ; Environmental Microbiology ; Enzymes ; Euphotic zone ; Extracellular enzymes ; fjord ; Fjords ; Glycogen ; Laminarin ; marine bacteria ; metatranscriptomics ; Microbiology ; Mikrobiologi ; Nitrosopumilus ; Nutrient concentrations ; Nutrients ; Oceanography ; Oxidation ; Peptidase ; peptidases ; Photosynthesis ; Research Article ; Salinity ; Stratification ; Taxonomy ; Transcription ; transporters ; vertical depth gradients ; Water column ; Zooplankton</subject><ispartof>mSystems, 2021-12, Vol.6 (6), p.e0057521-e0057521</ispartof><rights>Copyright © 2021 Pontiller et al.</rights><rights>Copyright © 2021 Pontiller et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2021 Pontiller et al. 2021 Pontiller et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a608t-f26ea7e1b9da5fce0507aa4d716b81c3cf4a7a60eb71ca71f86c18f3f15324e83</citedby><cites>FETCH-LOGICAL-a608t-f26ea7e1b9da5fce0507aa4d716b81c3cf4a7a60eb71ca71f86c18f3f15324e83</cites><orcidid>0000-0002-9926-3323 ; 0000-0003-4787-7021 ; 0000-0002-6405-1347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2622979015/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2622979015?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3174,25732,27903,27904,36991,36992,44569,52729,52730,52731,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34904860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-102050$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-201828$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Poretsky, Rachel</contributor><creatorcontrib>Pontiller, Benjamin</creatorcontrib><creatorcontrib>Pérez-Martínez, Clara</creatorcontrib><creatorcontrib>Bunse, Carina</creatorcontrib><creatorcontrib>Osbeck, Christofer M G</creatorcontrib><creatorcontrib>González, José M</creatorcontrib><creatorcontrib>Lundin, Daniel</creatorcontrib><creatorcontrib>Pinhassi, Jarone</creatorcontrib><title>Taxon-Specific Shifts in Bacterial and Archaeal Transcription of Dissolved Organic Matter Cycling Genes in a Stratified Fjord</title><title>mSystems</title><addtitle>mSystems</addtitle><addtitle>mSystems</addtitle><description>A considerable fraction of organic matter derived from photosynthesis in the euphotic zone settles into the ocean's interior and, as it progresses, is degraded by diverse microbial consortia that utilize a suite of extracellular enzymes and membrane transporters. Still, the molecular details that regulate carbon cycling across depths remain little explored. As stratification in fjords has made them attractive models to explore patterns in biological oceanography, we here analyzed bacterial and archaeal transcription in samples from five depth layers in the Gullmar Fjord, Sweden. Transcriptional variation over depth correlated with gradients in chlorophyll and nutrient concentrations. Differences in transcription between sampling dates (summer and early autumn) were strongly correlated with ammonium concentrations, which potentially was linked with a stronger influence of (micro-)zooplankton grazing in summer. Transcriptional investment in carbohydrate-active enzymes (CAZymes) decreased with depth and shifted toward peptidases, partly a result of elevated CAZyme transcription by , , and at 2 to 25 m and a dominance of peptidase transcription by and from 50 m down. In particular, CAZymes for chitin, laminarin, and glycogen were important. High levels of transcription of ammonium transporter genes by at depth (up to 18% of total transcription), along with the genes for ammonia oxidation and CO fixation, indicated that chemolithoautotrophy contributed to the carbon flux in the fjord. The taxon-specific expression of functional genes for processing of the marine pool of dissolved organic matter and inorganic nutrients across depths emphasizes the importance of different microbial foraging mechanisms over spatiotemporal scales for shaping biogeochemical cycles. It is generally recognized that stratification in the ocean strongly influences both the community composition and the distribution of ecological functions of microbial communities, which in turn are expected to shape the biogeochemical cycling of essential elements over depth. Here, we used metatranscriptomics analysis to infer molecular detail on the distribution of gene systems central to the utilization of organic matter in a stratified marine system. We thereby uncovered that pronounced shifts in the transcription of genes encoding CAZymes, peptidases, and membrane transporters occurred over depth among key prokaryotic orders. This implies that sequential utilization and transformation of organic matter through the water column is a key feature that ultimately influences the efficiency of the biological carbon pump.</description><subject>Akvatisk ekologi</subject><subject>Ammonia</subject><subject>Ammonium</subject><subject>Ammonium transporter</subject><subject>Aquatic Ecology</subject><subject>Bacteria</subject><subject>Biopolymers</subject><subject>carbohydrate-active enzymes</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide fixation</subject><subject>Chitin</subject><subject>Chlorophyll</subject><subject>Cluster analysis</subject><subject>Community composition</subject><subject>Cyanobacteria</subject><subject>dissolved organic carbon</subject><subject>Dissolved organic matter</subject><subject>Environmental Microbiology</subject><subject>Enzymes</subject><subject>Euphotic zone</subject><subject>Extracellular enzymes</subject><subject>fjord</subject><subject>Fjords</subject><subject>Glycogen</subject><subject>Laminarin</subject><subject>marine bacteria</subject><subject>metatranscriptomics</subject><subject>Microbiology</subject><subject>Mikrobiologi</subject><subject>Nitrosopumilus</subject><subject>Nutrient concentrations</subject><subject>Nutrients</subject><subject>Oceanography</subject><subject>Oxidation</subject><subject>Peptidase</subject><subject>peptidases</subject><subject>Photosynthesis</subject><subject>Research Article</subject><subject>Salinity</subject><subject>Stratification</subject><subject>Taxonomy</subject><subject>Transcription</subject><subject>transporters</subject><subject>vertical depth gradients</subject><subject>Water column</subject><subject>Zooplankton</subject><issn>2379-5077</issn><issn>2379-5077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNks9v0zAUgCMEYtPYH8AFReLCJcV2Etu5II2OjUlDO7RwtV6d59ZVYhc7GfTA_47XbmPlgDj51_e-52e_LHtNyYRSJt_3s20csI8TQmpRF4w-y45ZKZqiJkI8fzI_yk5jXBNCKC8FZc3L7KisGlJJTo6zX3P46V0x26C2xup8trJmiLl1-UfQAwYLXQ6uzc-CXgGmxTyAizrYzWC9y73Jz22MvrvFNr8JS3DJ8QWGFJlPt7qzbplfosOdEfLZEGBIeRJ8sfahfZW9MNBFPL0fT7KvF5_m08_F9c3l1fTsugBO5FAYxhEE0kXTQm00klQWQNUKyheS6lKbCkRCcSGoBkGN5JpKUxpal6xCWZ5kV3tv62GtNsH2ELbKg1W7DR-WCsJgdYeK8BpJi7JBXleE6AUpy7YGbGTJheF1chV7V_yBm3FxYDu33852trEfFSNUMvl_fOdGRQlLhSX-w55PcI-tRpcerTsIOzxxdqWW_lZJLkjFaBK8uxcE_33EOKjeRo1dBw79GBXjlBBZkUYk9O1f6NqPwaWvSBRjjWgIvauY7ikdfIwBzeNlKFF3vageelHtelHtLjHZx0Ds2R_rvwLePC37McVDq5a_AdoJ7PE</recordid><startdate>20211221</startdate><enddate>20211221</enddate><creator>Pontiller, Benjamin</creator><creator>Pérez-Martínez, Clara</creator><creator>Bunse, Carina</creator><creator>Osbeck, Christofer M G</creator><creator>González, José M</creator><creator>Lundin, Daniel</creator><creator>Pinhassi, Jarone</creator><general>American Society for Microbiology</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGRUY</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D92</scope><scope>ZZAVC</scope><scope>ADHXS</scope><scope>D93</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9926-3323</orcidid><orcidid>https://orcid.org/0000-0003-4787-7021</orcidid><orcidid>https://orcid.org/0000-0002-6405-1347</orcidid></search><sort><creationdate>20211221</creationdate><title>Taxon-Specific Shifts in Bacterial and Archaeal Transcription of Dissolved Organic Matter Cycling Genes in a Stratified Fjord</title><author>Pontiller, Benjamin ; Pérez-Martínez, Clara ; Bunse, Carina ; Osbeck, Christofer M G ; González, José M ; Lundin, Daniel ; Pinhassi, Jarone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a608t-f26ea7e1b9da5fce0507aa4d716b81c3cf4a7a60eb71ca71f86c18f3f15324e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Akvatisk ekologi</topic><topic>Ammonia</topic><topic>Ammonium</topic><topic>Ammonium transporter</topic><topic>Aquatic Ecology</topic><topic>Bacteria</topic><topic>Biopolymers</topic><topic>carbohydrate-active enzymes</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide fixation</topic><topic>Chitin</topic><topic>Chlorophyll</topic><topic>Cluster analysis</topic><topic>Community composition</topic><topic>Cyanobacteria</topic><topic>dissolved organic carbon</topic><topic>Dissolved organic matter</topic><topic>Environmental Microbiology</topic><topic>Enzymes</topic><topic>Euphotic zone</topic><topic>Extracellular enzymes</topic><topic>fjord</topic><topic>Fjords</topic><topic>Glycogen</topic><topic>Laminarin</topic><topic>marine bacteria</topic><topic>metatranscriptomics</topic><topic>Microbiology</topic><topic>Mikrobiologi</topic><topic>Nitrosopumilus</topic><topic>Nutrient concentrations</topic><topic>Nutrients</topic><topic>Oceanography</topic><topic>Oxidation</topic><topic>Peptidase</topic><topic>peptidases</topic><topic>Photosynthesis</topic><topic>Research Article</topic><topic>Salinity</topic><topic>Stratification</topic><topic>Taxonomy</topic><topic>Transcription</topic><topic>transporters</topic><topic>vertical depth gradients</topic><topic>Water column</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pontiller, Benjamin</creatorcontrib><creatorcontrib>Pérez-Martínez, Clara</creatorcontrib><creatorcontrib>Bunse, Carina</creatorcontrib><creatorcontrib>Osbeck, Christofer M G</creatorcontrib><creatorcontrib>González, José M</creatorcontrib><creatorcontrib>Lundin, Daniel</creatorcontrib><creatorcontrib>Pinhassi, Jarone</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Linnéuniversitetet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linnéuniversitetet</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SWEPUB Umeå universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>mSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pontiller, Benjamin</au><au>Pérez-Martínez, Clara</au><au>Bunse, Carina</au><au>Osbeck, Christofer M G</au><au>González, José M</au><au>Lundin, Daniel</au><au>Pinhassi, Jarone</au><au>Poretsky, Rachel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taxon-Specific Shifts in Bacterial and Archaeal Transcription of Dissolved Organic Matter Cycling Genes in a Stratified Fjord</atitle><jtitle>mSystems</jtitle><stitle>mSystems</stitle><addtitle>mSystems</addtitle><date>2021-12-21</date><risdate>2021</risdate><volume>6</volume><issue>6</issue><spage>e0057521</spage><epage>e0057521</epage><pages>e0057521-e0057521</pages><issn>2379-5077</issn><eissn>2379-5077</eissn><abstract>A considerable fraction of organic matter derived from photosynthesis in the euphotic zone settles into the ocean's interior and, as it progresses, is degraded by diverse microbial consortia that utilize a suite of extracellular enzymes and membrane transporters. Still, the molecular details that regulate carbon cycling across depths remain little explored. As stratification in fjords has made them attractive models to explore patterns in biological oceanography, we here analyzed bacterial and archaeal transcription in samples from five depth layers in the Gullmar Fjord, Sweden. Transcriptional variation over depth correlated with gradients in chlorophyll and nutrient concentrations. Differences in transcription between sampling dates (summer and early autumn) were strongly correlated with ammonium concentrations, which potentially was linked with a stronger influence of (micro-)zooplankton grazing in summer. Transcriptional investment in carbohydrate-active enzymes (CAZymes) decreased with depth and shifted toward peptidases, partly a result of elevated CAZyme transcription by , , and at 2 to 25 m and a dominance of peptidase transcription by and from 50 m down. In particular, CAZymes for chitin, laminarin, and glycogen were important. High levels of transcription of ammonium transporter genes by at depth (up to 18% of total transcription), along with the genes for ammonia oxidation and CO fixation, indicated that chemolithoautotrophy contributed to the carbon flux in the fjord. The taxon-specific expression of functional genes for processing of the marine pool of dissolved organic matter and inorganic nutrients across depths emphasizes the importance of different microbial foraging mechanisms over spatiotemporal scales for shaping biogeochemical cycles. It is generally recognized that stratification in the ocean strongly influences both the community composition and the distribution of ecological functions of microbial communities, which in turn are expected to shape the biogeochemical cycling of essential elements over depth. Here, we used metatranscriptomics analysis to infer molecular detail on the distribution of gene systems central to the utilization of organic matter in a stratified marine system. We thereby uncovered that pronounced shifts in the transcription of genes encoding CAZymes, peptidases, and membrane transporters occurred over depth among key prokaryotic orders. This implies that sequential utilization and transformation of organic matter through the water column is a key feature that ultimately influences the efficiency of the biological carbon pump.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>34904860</pmid><doi>10.1128/mSystems.00575-21</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9926-3323</orcidid><orcidid>https://orcid.org/0000-0003-4787-7021</orcidid><orcidid>https://orcid.org/0000-0002-6405-1347</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-5077
ispartof mSystems, 2021-12, Vol.6 (6), p.e0057521-e0057521
issn 2379-5077
2379-5077
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_065e0de89e65400cb033d5ae98367f65
source Publicly Available Content Database; American Society for Microbiology (ASM) Journals; PubMed Central
subjects Akvatisk ekologi
Ammonia
Ammonium
Ammonium transporter
Aquatic Ecology
Bacteria
Biopolymers
carbohydrate-active enzymes
Carbon
Carbon cycle
Carbon dioxide
Carbon dioxide fixation
Chitin
Chlorophyll
Cluster analysis
Community composition
Cyanobacteria
dissolved organic carbon
Dissolved organic matter
Environmental Microbiology
Enzymes
Euphotic zone
Extracellular enzymes
fjord
Fjords
Glycogen
Laminarin
marine bacteria
metatranscriptomics
Microbiology
Mikrobiologi
Nitrosopumilus
Nutrient concentrations
Nutrients
Oceanography
Oxidation
Peptidase
peptidases
Photosynthesis
Research Article
Salinity
Stratification
Taxonomy
Transcription
transporters
vertical depth gradients
Water column
Zooplankton
title Taxon-Specific Shifts in Bacterial and Archaeal Transcription of Dissolved Organic Matter Cycling Genes in a Stratified Fjord
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taxon-Specific%20Shifts%20in%20Bacterial%20and%20Archaeal%20Transcription%20of%20Dissolved%20Organic%20Matter%20Cycling%20Genes%20in%20a%20Stratified%20Fjord&rft.jtitle=mSystems&rft.au=Pontiller,%20Benjamin&rft.date=2021-12-21&rft.volume=6&rft.issue=6&rft.spage=e0057521&rft.epage=e0057521&rft.pages=e0057521-e0057521&rft.issn=2379-5077&rft.eissn=2379-5077&rft_id=info:doi/10.1128/mSystems.00575-21&rft_dat=%3Cproquest_doaj_%3E2610084097%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a608t-f26ea7e1b9da5fce0507aa4d716b81c3cf4a7a60eb71ca71f86c18f3f15324e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622979015&rft_id=info:pmid/34904860&rfr_iscdi=true