Loading…
Taxon-Specific Shifts in Bacterial and Archaeal Transcription of Dissolved Organic Matter Cycling Genes in a Stratified Fjord
A considerable fraction of organic matter derived from photosynthesis in the euphotic zone settles into the ocean's interior and, as it progresses, is degraded by diverse microbial consortia that utilize a suite of extracellular enzymes and membrane transporters. Still, the molecular details th...
Saved in:
Published in: | mSystems 2021-12, Vol.6 (6), p.e0057521-e0057521 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a608t-f26ea7e1b9da5fce0507aa4d716b81c3cf4a7a60eb71ca71f86c18f3f15324e83 |
---|---|
cites | cdi_FETCH-LOGICAL-a608t-f26ea7e1b9da5fce0507aa4d716b81c3cf4a7a60eb71ca71f86c18f3f15324e83 |
container_end_page | e0057521 |
container_issue | 6 |
container_start_page | e0057521 |
container_title | mSystems |
container_volume | 6 |
creator | Pontiller, Benjamin Pérez-Martínez, Clara Bunse, Carina Osbeck, Christofer M G González, José M Lundin, Daniel Pinhassi, Jarone |
description | A considerable fraction of organic matter derived from photosynthesis in the euphotic zone settles into the ocean's interior and, as it progresses, is degraded by diverse microbial consortia that utilize a suite of extracellular enzymes and membrane transporters. Still, the molecular details that regulate carbon cycling across depths remain little explored. As stratification in fjords has made them attractive models to explore patterns in biological oceanography, we here analyzed bacterial and archaeal transcription in samples from five depth layers in the Gullmar Fjord, Sweden. Transcriptional variation over depth correlated with gradients in chlorophyll
and nutrient concentrations. Differences in transcription between sampling dates (summer and early autumn) were strongly correlated with ammonium concentrations, which potentially was linked with a stronger influence of (micro-)zooplankton grazing in summer. Transcriptional investment in carbohydrate-active enzymes (CAZymes) decreased with depth and shifted toward peptidases, partly a result of elevated CAZyme transcription by
,
, and
at 2 to 25 m and a dominance of peptidase transcription by
and
from 50 m down. In particular, CAZymes for chitin, laminarin, and glycogen were important. High levels of transcription of ammonium transporter genes by
at depth (up to 18% of total transcription), along with the genes for ammonia oxidation and CO
fixation, indicated that chemolithoautotrophy contributed to the carbon flux in the fjord. The taxon-specific expression of functional genes for processing of the marine pool of dissolved organic matter and inorganic nutrients across depths emphasizes the importance of different microbial foraging mechanisms over spatiotemporal scales for shaping biogeochemical cycles.
It is generally recognized that stratification in the ocean strongly influences both the community composition and the distribution of ecological functions of microbial communities, which in turn are expected to shape the biogeochemical cycling of essential elements over depth. Here, we used metatranscriptomics analysis to infer molecular detail on the distribution of gene systems central to the utilization of organic matter in a stratified marine system. We thereby uncovered that pronounced shifts in the transcription of genes encoding CAZymes, peptidases, and membrane transporters occurred over depth among key prokaryotic orders. This implies that sequential utilization and transformation of organic mat |
doi_str_mv | 10.1128/mSystems.00575-21 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_065e0de89e65400cb033d5ae98367f65</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_065e0de89e65400cb033d5ae98367f65</doaj_id><sourcerecordid>2610084097</sourcerecordid><originalsourceid>FETCH-LOGICAL-a608t-f26ea7e1b9da5fce0507aa4d716b81c3cf4a7a60eb71ca71f86c18f3f15324e83</originalsourceid><addsrcrecordid>eNqNks9v0zAUgCMEYtPYH8AFReLCJcV2Etu5II2OjUlDO7RwtV6d59ZVYhc7GfTA_47XbmPlgDj51_e-52e_LHtNyYRSJt_3s20csI8TQmpRF4w-y45ZKZqiJkI8fzI_yk5jXBNCKC8FZc3L7KisGlJJTo6zX3P46V0x26C2xup8trJmiLl1-UfQAwYLXQ6uzc-CXgGmxTyAizrYzWC9y73Jz22MvrvFNr8JS3DJ8QWGFJlPt7qzbplfosOdEfLZEGBIeRJ8sfahfZW9MNBFPL0fT7KvF5_m08_F9c3l1fTsugBO5FAYxhEE0kXTQm00klQWQNUKyheS6lKbCkRCcSGoBkGN5JpKUxpal6xCWZ5kV3tv62GtNsH2ELbKg1W7DR-WCsJgdYeK8BpJi7JBXleE6AUpy7YGbGTJheF1chV7V_yBm3FxYDu33852trEfFSNUMvl_fOdGRQlLhSX-w55PcI-tRpcerTsIOzxxdqWW_lZJLkjFaBK8uxcE_33EOKjeRo1dBw79GBXjlBBZkUYk9O1f6NqPwaWvSBRjjWgIvauY7ikdfIwBzeNlKFF3vageelHtelHtLjHZx0Ds2R_rvwLePC37McVDq5a_AdoJ7PE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622979015</pqid></control><display><type>article</type><title>Taxon-Specific Shifts in Bacterial and Archaeal Transcription of Dissolved Organic Matter Cycling Genes in a Stratified Fjord</title><source>Publicly Available Content Database</source><source>American Society for Microbiology (ASM) Journals</source><source>PubMed Central</source><creator>Pontiller, Benjamin ; Pérez-Martínez, Clara ; Bunse, Carina ; Osbeck, Christofer M G ; González, José M ; Lundin, Daniel ; Pinhassi, Jarone</creator><contributor>Poretsky, Rachel</contributor><creatorcontrib>Pontiller, Benjamin ; Pérez-Martínez, Clara ; Bunse, Carina ; Osbeck, Christofer M G ; González, José M ; Lundin, Daniel ; Pinhassi, Jarone ; Poretsky, Rachel</creatorcontrib><description>A considerable fraction of organic matter derived from photosynthesis in the euphotic zone settles into the ocean's interior and, as it progresses, is degraded by diverse microbial consortia that utilize a suite of extracellular enzymes and membrane transporters. Still, the molecular details that regulate carbon cycling across depths remain little explored. As stratification in fjords has made them attractive models to explore patterns in biological oceanography, we here analyzed bacterial and archaeal transcription in samples from five depth layers in the Gullmar Fjord, Sweden. Transcriptional variation over depth correlated with gradients in chlorophyll
and nutrient concentrations. Differences in transcription between sampling dates (summer and early autumn) were strongly correlated with ammonium concentrations, which potentially was linked with a stronger influence of (micro-)zooplankton grazing in summer. Transcriptional investment in carbohydrate-active enzymes (CAZymes) decreased with depth and shifted toward peptidases, partly a result of elevated CAZyme transcription by
,
, and
at 2 to 25 m and a dominance of peptidase transcription by
and
from 50 m down. In particular, CAZymes for chitin, laminarin, and glycogen were important. High levels of transcription of ammonium transporter genes by
at depth (up to 18% of total transcription), along with the genes for ammonia oxidation and CO
fixation, indicated that chemolithoautotrophy contributed to the carbon flux in the fjord. The taxon-specific expression of functional genes for processing of the marine pool of dissolved organic matter and inorganic nutrients across depths emphasizes the importance of different microbial foraging mechanisms over spatiotemporal scales for shaping biogeochemical cycles.
It is generally recognized that stratification in the ocean strongly influences both the community composition and the distribution of ecological functions of microbial communities, which in turn are expected to shape the biogeochemical cycling of essential elements over depth. Here, we used metatranscriptomics analysis to infer molecular detail on the distribution of gene systems central to the utilization of organic matter in a stratified marine system. We thereby uncovered that pronounced shifts in the transcription of genes encoding CAZymes, peptidases, and membrane transporters occurred over depth among key prokaryotic orders. This implies that sequential utilization and transformation of organic matter through the water column is a key feature that ultimately influences the efficiency of the biological carbon pump.</description><identifier>ISSN: 2379-5077</identifier><identifier>EISSN: 2379-5077</identifier><identifier>DOI: 10.1128/mSystems.00575-21</identifier><identifier>PMID: 34904860</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Akvatisk ekologi ; Ammonia ; Ammonium ; Ammonium transporter ; Aquatic Ecology ; Bacteria ; Biopolymers ; carbohydrate-active enzymes ; Carbon ; Carbon cycle ; Carbon dioxide ; Carbon dioxide fixation ; Chitin ; Chlorophyll ; Cluster analysis ; Community composition ; Cyanobacteria ; dissolved organic carbon ; Dissolved organic matter ; Environmental Microbiology ; Enzymes ; Euphotic zone ; Extracellular enzymes ; fjord ; Fjords ; Glycogen ; Laminarin ; marine bacteria ; metatranscriptomics ; Microbiology ; Mikrobiologi ; Nitrosopumilus ; Nutrient concentrations ; Nutrients ; Oceanography ; Oxidation ; Peptidase ; peptidases ; Photosynthesis ; Research Article ; Salinity ; Stratification ; Taxonomy ; Transcription ; transporters ; vertical depth gradients ; Water column ; Zooplankton</subject><ispartof>mSystems, 2021-12, Vol.6 (6), p.e0057521-e0057521</ispartof><rights>Copyright © 2021 Pontiller et al.</rights><rights>Copyright © 2021 Pontiller et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2021 Pontiller et al. 2021 Pontiller et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a608t-f26ea7e1b9da5fce0507aa4d716b81c3cf4a7a60eb71ca71f86c18f3f15324e83</citedby><cites>FETCH-LOGICAL-a608t-f26ea7e1b9da5fce0507aa4d716b81c3cf4a7a60eb71ca71f86c18f3f15324e83</cites><orcidid>0000-0002-9926-3323 ; 0000-0003-4787-7021 ; 0000-0002-6405-1347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2622979015/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2622979015?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3174,25732,27903,27904,36991,36992,44569,52729,52730,52731,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34904860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-102050$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-201828$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Poretsky, Rachel</contributor><creatorcontrib>Pontiller, Benjamin</creatorcontrib><creatorcontrib>Pérez-Martínez, Clara</creatorcontrib><creatorcontrib>Bunse, Carina</creatorcontrib><creatorcontrib>Osbeck, Christofer M G</creatorcontrib><creatorcontrib>González, José M</creatorcontrib><creatorcontrib>Lundin, Daniel</creatorcontrib><creatorcontrib>Pinhassi, Jarone</creatorcontrib><title>Taxon-Specific Shifts in Bacterial and Archaeal Transcription of Dissolved Organic Matter Cycling Genes in a Stratified Fjord</title><title>mSystems</title><addtitle>mSystems</addtitle><addtitle>mSystems</addtitle><description>A considerable fraction of organic matter derived from photosynthesis in the euphotic zone settles into the ocean's interior and, as it progresses, is degraded by diverse microbial consortia that utilize a suite of extracellular enzymes and membrane transporters. Still, the molecular details that regulate carbon cycling across depths remain little explored. As stratification in fjords has made them attractive models to explore patterns in biological oceanography, we here analyzed bacterial and archaeal transcription in samples from five depth layers in the Gullmar Fjord, Sweden. Transcriptional variation over depth correlated with gradients in chlorophyll
and nutrient concentrations. Differences in transcription between sampling dates (summer and early autumn) were strongly correlated with ammonium concentrations, which potentially was linked with a stronger influence of (micro-)zooplankton grazing in summer. Transcriptional investment in carbohydrate-active enzymes (CAZymes) decreased with depth and shifted toward peptidases, partly a result of elevated CAZyme transcription by
,
, and
at 2 to 25 m and a dominance of peptidase transcription by
and
from 50 m down. In particular, CAZymes for chitin, laminarin, and glycogen were important. High levels of transcription of ammonium transporter genes by
at depth (up to 18% of total transcription), along with the genes for ammonia oxidation and CO
fixation, indicated that chemolithoautotrophy contributed to the carbon flux in the fjord. The taxon-specific expression of functional genes for processing of the marine pool of dissolved organic matter and inorganic nutrients across depths emphasizes the importance of different microbial foraging mechanisms over spatiotemporal scales for shaping biogeochemical cycles.
It is generally recognized that stratification in the ocean strongly influences both the community composition and the distribution of ecological functions of microbial communities, which in turn are expected to shape the biogeochemical cycling of essential elements over depth. Here, we used metatranscriptomics analysis to infer molecular detail on the distribution of gene systems central to the utilization of organic matter in a stratified marine system. We thereby uncovered that pronounced shifts in the transcription of genes encoding CAZymes, peptidases, and membrane transporters occurred over depth among key prokaryotic orders. This implies that sequential utilization and transformation of organic matter through the water column is a key feature that ultimately influences the efficiency of the biological carbon pump.</description><subject>Akvatisk ekologi</subject><subject>Ammonia</subject><subject>Ammonium</subject><subject>Ammonium transporter</subject><subject>Aquatic Ecology</subject><subject>Bacteria</subject><subject>Biopolymers</subject><subject>carbohydrate-active enzymes</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide fixation</subject><subject>Chitin</subject><subject>Chlorophyll</subject><subject>Cluster analysis</subject><subject>Community composition</subject><subject>Cyanobacteria</subject><subject>dissolved organic carbon</subject><subject>Dissolved organic matter</subject><subject>Environmental Microbiology</subject><subject>Enzymes</subject><subject>Euphotic zone</subject><subject>Extracellular enzymes</subject><subject>fjord</subject><subject>Fjords</subject><subject>Glycogen</subject><subject>Laminarin</subject><subject>marine bacteria</subject><subject>metatranscriptomics</subject><subject>Microbiology</subject><subject>Mikrobiologi</subject><subject>Nitrosopumilus</subject><subject>Nutrient concentrations</subject><subject>Nutrients</subject><subject>Oceanography</subject><subject>Oxidation</subject><subject>Peptidase</subject><subject>peptidases</subject><subject>Photosynthesis</subject><subject>Research Article</subject><subject>Salinity</subject><subject>Stratification</subject><subject>Taxonomy</subject><subject>Transcription</subject><subject>transporters</subject><subject>vertical depth gradients</subject><subject>Water column</subject><subject>Zooplankton</subject><issn>2379-5077</issn><issn>2379-5077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNks9v0zAUgCMEYtPYH8AFReLCJcV2Etu5II2OjUlDO7RwtV6d59ZVYhc7GfTA_47XbmPlgDj51_e-52e_LHtNyYRSJt_3s20csI8TQmpRF4w-y45ZKZqiJkI8fzI_yk5jXBNCKC8FZc3L7KisGlJJTo6zX3P46V0x26C2xup8trJmiLl1-UfQAwYLXQ6uzc-CXgGmxTyAizrYzWC9y73Jz22MvrvFNr8JS3DJ8QWGFJlPt7qzbplfosOdEfLZEGBIeRJ8sfahfZW9MNBFPL0fT7KvF5_m08_F9c3l1fTsugBO5FAYxhEE0kXTQm00klQWQNUKyheS6lKbCkRCcSGoBkGN5JpKUxpal6xCWZ5kV3tv62GtNsH2ELbKg1W7DR-WCsJgdYeK8BpJi7JBXleE6AUpy7YGbGTJheF1chV7V_yBm3FxYDu33852trEfFSNUMvl_fOdGRQlLhSX-w55PcI-tRpcerTsIOzxxdqWW_lZJLkjFaBK8uxcE_33EOKjeRo1dBw79GBXjlBBZkUYk9O1f6NqPwaWvSBRjjWgIvauY7ikdfIwBzeNlKFF3vageelHtelHtLjHZx0Ds2R_rvwLePC37McVDq5a_AdoJ7PE</recordid><startdate>20211221</startdate><enddate>20211221</enddate><creator>Pontiller, Benjamin</creator><creator>Pérez-Martínez, Clara</creator><creator>Bunse, Carina</creator><creator>Osbeck, Christofer M G</creator><creator>González, José M</creator><creator>Lundin, Daniel</creator><creator>Pinhassi, Jarone</creator><general>American Society for Microbiology</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGRUY</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D92</scope><scope>ZZAVC</scope><scope>ADHXS</scope><scope>D93</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9926-3323</orcidid><orcidid>https://orcid.org/0000-0003-4787-7021</orcidid><orcidid>https://orcid.org/0000-0002-6405-1347</orcidid></search><sort><creationdate>20211221</creationdate><title>Taxon-Specific Shifts in Bacterial and Archaeal Transcription of Dissolved Organic Matter Cycling Genes in a Stratified Fjord</title><author>Pontiller, Benjamin ; Pérez-Martínez, Clara ; Bunse, Carina ; Osbeck, Christofer M G ; González, José M ; Lundin, Daniel ; Pinhassi, Jarone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a608t-f26ea7e1b9da5fce0507aa4d716b81c3cf4a7a60eb71ca71f86c18f3f15324e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Akvatisk ekologi</topic><topic>Ammonia</topic><topic>Ammonium</topic><topic>Ammonium transporter</topic><topic>Aquatic Ecology</topic><topic>Bacteria</topic><topic>Biopolymers</topic><topic>carbohydrate-active enzymes</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide fixation</topic><topic>Chitin</topic><topic>Chlorophyll</topic><topic>Cluster analysis</topic><topic>Community composition</topic><topic>Cyanobacteria</topic><topic>dissolved organic carbon</topic><topic>Dissolved organic matter</topic><topic>Environmental Microbiology</topic><topic>Enzymes</topic><topic>Euphotic zone</topic><topic>Extracellular enzymes</topic><topic>fjord</topic><topic>Fjords</topic><topic>Glycogen</topic><topic>Laminarin</topic><topic>marine bacteria</topic><topic>metatranscriptomics</topic><topic>Microbiology</topic><topic>Mikrobiologi</topic><topic>Nitrosopumilus</topic><topic>Nutrient concentrations</topic><topic>Nutrients</topic><topic>Oceanography</topic><topic>Oxidation</topic><topic>Peptidase</topic><topic>peptidases</topic><topic>Photosynthesis</topic><topic>Research Article</topic><topic>Salinity</topic><topic>Stratification</topic><topic>Taxonomy</topic><topic>Transcription</topic><topic>transporters</topic><topic>vertical depth gradients</topic><topic>Water column</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pontiller, Benjamin</creatorcontrib><creatorcontrib>Pérez-Martínez, Clara</creatorcontrib><creatorcontrib>Bunse, Carina</creatorcontrib><creatorcontrib>Osbeck, Christofer M G</creatorcontrib><creatorcontrib>González, José M</creatorcontrib><creatorcontrib>Lundin, Daniel</creatorcontrib><creatorcontrib>Pinhassi, Jarone</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Linnéuniversitetet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linnéuniversitetet</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SWEPUB Umeå universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>mSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pontiller, Benjamin</au><au>Pérez-Martínez, Clara</au><au>Bunse, Carina</au><au>Osbeck, Christofer M G</au><au>González, José M</au><au>Lundin, Daniel</au><au>Pinhassi, Jarone</au><au>Poretsky, Rachel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taxon-Specific Shifts in Bacterial and Archaeal Transcription of Dissolved Organic Matter Cycling Genes in a Stratified Fjord</atitle><jtitle>mSystems</jtitle><stitle>mSystems</stitle><addtitle>mSystems</addtitle><date>2021-12-21</date><risdate>2021</risdate><volume>6</volume><issue>6</issue><spage>e0057521</spage><epage>e0057521</epage><pages>e0057521-e0057521</pages><issn>2379-5077</issn><eissn>2379-5077</eissn><abstract>A considerable fraction of organic matter derived from photosynthesis in the euphotic zone settles into the ocean's interior and, as it progresses, is degraded by diverse microbial consortia that utilize a suite of extracellular enzymes and membrane transporters. Still, the molecular details that regulate carbon cycling across depths remain little explored. As stratification in fjords has made them attractive models to explore patterns in biological oceanography, we here analyzed bacterial and archaeal transcription in samples from five depth layers in the Gullmar Fjord, Sweden. Transcriptional variation over depth correlated with gradients in chlorophyll
and nutrient concentrations. Differences in transcription between sampling dates (summer and early autumn) were strongly correlated with ammonium concentrations, which potentially was linked with a stronger influence of (micro-)zooplankton grazing in summer. Transcriptional investment in carbohydrate-active enzymes (CAZymes) decreased with depth and shifted toward peptidases, partly a result of elevated CAZyme transcription by
,
, and
at 2 to 25 m and a dominance of peptidase transcription by
and
from 50 m down. In particular, CAZymes for chitin, laminarin, and glycogen were important. High levels of transcription of ammonium transporter genes by
at depth (up to 18% of total transcription), along with the genes for ammonia oxidation and CO
fixation, indicated that chemolithoautotrophy contributed to the carbon flux in the fjord. The taxon-specific expression of functional genes for processing of the marine pool of dissolved organic matter and inorganic nutrients across depths emphasizes the importance of different microbial foraging mechanisms over spatiotemporal scales for shaping biogeochemical cycles.
It is generally recognized that stratification in the ocean strongly influences both the community composition and the distribution of ecological functions of microbial communities, which in turn are expected to shape the biogeochemical cycling of essential elements over depth. Here, we used metatranscriptomics analysis to infer molecular detail on the distribution of gene systems central to the utilization of organic matter in a stratified marine system. We thereby uncovered that pronounced shifts in the transcription of genes encoding CAZymes, peptidases, and membrane transporters occurred over depth among key prokaryotic orders. This implies that sequential utilization and transformation of organic matter through the water column is a key feature that ultimately influences the efficiency of the biological carbon pump.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>34904860</pmid><doi>10.1128/mSystems.00575-21</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9926-3323</orcidid><orcidid>https://orcid.org/0000-0003-4787-7021</orcidid><orcidid>https://orcid.org/0000-0002-6405-1347</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-5077 |
ispartof | mSystems, 2021-12, Vol.6 (6), p.e0057521-e0057521 |
issn | 2379-5077 2379-5077 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_065e0de89e65400cb033d5ae98367f65 |
source | Publicly Available Content Database; American Society for Microbiology (ASM) Journals; PubMed Central |
subjects | Akvatisk ekologi Ammonia Ammonium Ammonium transporter Aquatic Ecology Bacteria Biopolymers carbohydrate-active enzymes Carbon Carbon cycle Carbon dioxide Carbon dioxide fixation Chitin Chlorophyll Cluster analysis Community composition Cyanobacteria dissolved organic carbon Dissolved organic matter Environmental Microbiology Enzymes Euphotic zone Extracellular enzymes fjord Fjords Glycogen Laminarin marine bacteria metatranscriptomics Microbiology Mikrobiologi Nitrosopumilus Nutrient concentrations Nutrients Oceanography Oxidation Peptidase peptidases Photosynthesis Research Article Salinity Stratification Taxonomy Transcription transporters vertical depth gradients Water column Zooplankton |
title | Taxon-Specific Shifts in Bacterial and Archaeal Transcription of Dissolved Organic Matter Cycling Genes in a Stratified Fjord |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taxon-Specific%20Shifts%20in%20Bacterial%20and%20Archaeal%20Transcription%20of%20Dissolved%20Organic%20Matter%20Cycling%20Genes%20in%20a%20Stratified%20Fjord&rft.jtitle=mSystems&rft.au=Pontiller,%20Benjamin&rft.date=2021-12-21&rft.volume=6&rft.issue=6&rft.spage=e0057521&rft.epage=e0057521&rft.pages=e0057521-e0057521&rft.issn=2379-5077&rft.eissn=2379-5077&rft_id=info:doi/10.1128/mSystems.00575-21&rft_dat=%3Cproquest_doaj_%3E2610084097%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a608t-f26ea7e1b9da5fce0507aa4d716b81c3cf4a7a60eb71ca71f86c18f3f15324e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2622979015&rft_id=info:pmid/34904860&rfr_iscdi=true |