Loading…
Simulation of Epidemic Dynamics Using a Multi-Agent Model: Analysis of Social Distancing Strategies and Their Impacts on Public Health and Economy
Infectious disease epidemics have played a crucial role in shaping public health responses, particularly in global health crises. This study emerges as part of the efforts to prepare effective responses to potential future pandemics, leveraging lessons learned during the COVID-19 crisis. The researc...
Saved in:
Published in: | Applied sciences 2024-10, Vol.14 (19), p.8931 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Infectious disease epidemics have played a crucial role in shaping public health responses, particularly in global health crises. This study emerges as part of the efforts to prepare effective responses to potential future pandemics, leveraging lessons learned during the COVID-19 crisis. The research uses an adapted compartmental epidemiological model and a synthetic multi-agent community to investigate how social variables influence epidemic forecasts in socioeconomically vulnerable regions. Focusing on the simulation of epidemic dynamics in the socio-economically disadvantaged neighbourhood of Ilha Joana Bezerra in Recife, this study examines the impacts of social distancing strategies and other control measures, such as face masks and moderate social isolation. Through the adapted SEPAI3R3O model, which includes compartments for pre-symptomatic and asymptomatic states, this study provides a detailed analysis of disease dynamics in contexts characterised by high social vulnerability. The results underscore the importance of public health policies adapted to socio-economic factors, emphasising the need for continuous preparedness to manage future epidemic threats in vulnerable communities effectively. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app14198931 |