Loading…

Human-Exoskeleton Coupling Dynamics of a Multi-Mode Therapeutic Exoskeleton for Upper Limb Rehabilitation Training

The purpose of this study is to establish the human-exoskeleton coupling (HEC) dynamic model of the upper limb exoskeleton, overcome the difficulties of dynamic modeling caused by the differences of individual and disease conditions and the complexity of musculoskeletal system, to achieve early inte...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.61998-62007
Main Authors: Xie, Qiaolian, Meng, Qiaoling, Zeng, Qingxin, Fan, Yuanjie, Dai, Yue, Yu, Hongliu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-7fdd16cf279ef10dbccaff9ac9f4f2badd5a4d60aecceec814be65779d1cc5f83
cites cdi_FETCH-LOGICAL-c408t-7fdd16cf279ef10dbccaff9ac9f4f2badd5a4d60aecceec814be65779d1cc5f83
container_end_page 62007
container_issue
container_start_page 61998
container_title IEEE access
container_volume 9
creator Xie, Qiaolian
Meng, Qiaoling
Zeng, Qingxin
Fan, Yuanjie
Dai, Yue
Yu, Hongliu
description The purpose of this study is to establish the human-exoskeleton coupling (HEC) dynamic model of the upper limb exoskeleton, overcome the difficulties of dynamic modeling caused by the differences of individual and disease conditions and the complexity of musculoskeletal system, to achieve early intervention and optimal assistance for stroke patients. This paper proposes a method of HEC dynamics modeling, and analyzes the HEC dynamics in the patient-active training (PAT) and patient-passive training (PPT) mode, and designs a step-by-step dynamic parameter identification method suitable for the PAT and PPT modes. Comparing the HEC torques obtained by the dynamic model with the real torques measured by torque sensors, the root mean square error (RMSE) can be kept within 13% in both PAT and PPT modes. A calibration experiment was intended to further verify the accuracy of dynamic parameter identification. The theoretical torque of the load calculated by the dynamic model, is compared with the difference calculated by parameter identification. The trends and peaks of the two curves are similar, and there are also errors caused by experimental measurements. Furthermore, this paper proposes a prediction model of the patient's height and weight and HEC dynamics parameters in the PPT mode. The RMSE of the elbow and shoulder joints of the prediction model is 9.5% and 13.3%. The proposed HEC dynamic model is helpful to provide different training effects in the PAT and PPT mode and optimal training and assistance for stroke patients.
doi_str_mv 10.1109/ACCESS.2021.3072781
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_07163f695fcb42c39bf14005841dbc31</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9400831</ieee_id><doaj_id>oai_doaj_org_article_07163f695fcb42c39bf14005841dbc31</doaj_id><sourcerecordid>2519083050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7fdd16cf279ef10dbccaff9ac9f4f2badd5a4d60aecceec814be65779d1cc5f83</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBIINgv2CUS546k6VeOqIwPaRMS286RmziQ0TUlbSX492QUIXJxZPu9Z_tF0ZzRBWNU3NxW1XKzWSQ0YQtOi6Qo2Ul0kbBcxDzj-em__3k06_s9Da8Mqay4iPzjeIA2Xn66_h0bHFxLKjd2jW1fyd1XCwereuIMAbIem8HGa6eRbN_QQ4fjYBX5jzTOk13XoScre6jJC75BbRs7wGBDdevBtoH3Kjoz0PQ4-42X0e5-ua0e49Xzw1N1u4pVSsshLozWLFcmKQQaRnWtFBgjQAmTmqQGrTNIdU4BlUJUJUtrzLOiEJoplZmSX0ZPE692sJedtwfwX9KBlT8J518l-LBCg5IWLOcmXMSoOk0UF7VhKaVZmbKgy1ngup64Ou8-RuwHuXejb8P4MsmYoCWnGQ1dfOpS3vW9R_Onyqg8eiUnr-TRK_nrVUDNJ5RFxD-ECPplUP4GA5WSig</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519083050</pqid></control><display><type>article</type><title>Human-Exoskeleton Coupling Dynamics of a Multi-Mode Therapeutic Exoskeleton for Upper Limb Rehabilitation Training</title><source>IEEE Open Access Journals</source><creator>Xie, Qiaolian ; Meng, Qiaoling ; Zeng, Qingxin ; Fan, Yuanjie ; Dai, Yue ; Yu, Hongliu</creator><creatorcontrib>Xie, Qiaolian ; Meng, Qiaoling ; Zeng, Qingxin ; Fan, Yuanjie ; Dai, Yue ; Yu, Hongliu</creatorcontrib><description>The purpose of this study is to establish the human-exoskeleton coupling (HEC) dynamic model of the upper limb exoskeleton, overcome the difficulties of dynamic modeling caused by the differences of individual and disease conditions and the complexity of musculoskeletal system, to achieve early intervention and optimal assistance for stroke patients. This paper proposes a method of HEC dynamics modeling, and analyzes the HEC dynamics in the patient-active training (PAT) and patient-passive training (PPT) mode, and designs a step-by-step dynamic parameter identification method suitable for the PAT and PPT modes. Comparing the HEC torques obtained by the dynamic model with the real torques measured by torque sensors, the root mean square error (RMSE) can be kept within 13% in both PAT and PPT modes. A calibration experiment was intended to further verify the accuracy of dynamic parameter identification. The theoretical torque of the load calculated by the dynamic model, is compared with the difference calculated by parameter identification. The trends and peaks of the two curves are similar, and there are also errors caused by experimental measurements. Furthermore, this paper proposes a prediction model of the patient's height and weight and HEC dynamics parameters in the PPT mode. The RMSE of the elbow and shoulder joints of the prediction model is 9.5% and 13.3%. The proposed HEC dynamic model is helpful to provide different training effects in the PAT and PPT mode and optimal training and assistance for stroke patients.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3072781</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Coupling ; Dynamic models ; Dynamics ; Elbow (anatomy) ; Exoskeletons ; Human-exoskeleton coupling dynamics ; Identification methods ; Mathematical model ; Modelling ; Musculoskeletal system ; Parameter identification ; Prediction models ; Rehabilitation ; rehabilitation training ; Robots ; Root-mean-square errors ; Stroke (medical condition) ; Torque ; Torquemeters ; Training</subject><ispartof>IEEE access, 2021, Vol.9, p.61998-62007</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7fdd16cf279ef10dbccaff9ac9f4f2badd5a4d60aecceec814be65779d1cc5f83</citedby><cites>FETCH-LOGICAL-c408t-7fdd16cf279ef10dbccaff9ac9f4f2badd5a4d60aecceec814be65779d1cc5f83</cites><orcidid>0000-0002-0240-4004 ; 0000-0001-6886-5498 ; 0000-0003-1171-5987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9400831$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Xie, Qiaolian</creatorcontrib><creatorcontrib>Meng, Qiaoling</creatorcontrib><creatorcontrib>Zeng, Qingxin</creatorcontrib><creatorcontrib>Fan, Yuanjie</creatorcontrib><creatorcontrib>Dai, Yue</creatorcontrib><creatorcontrib>Yu, Hongliu</creatorcontrib><title>Human-Exoskeleton Coupling Dynamics of a Multi-Mode Therapeutic Exoskeleton for Upper Limb Rehabilitation Training</title><title>IEEE access</title><addtitle>Access</addtitle><description>The purpose of this study is to establish the human-exoskeleton coupling (HEC) dynamic model of the upper limb exoskeleton, overcome the difficulties of dynamic modeling caused by the differences of individual and disease conditions and the complexity of musculoskeletal system, to achieve early intervention and optimal assistance for stroke patients. This paper proposes a method of HEC dynamics modeling, and analyzes the HEC dynamics in the patient-active training (PAT) and patient-passive training (PPT) mode, and designs a step-by-step dynamic parameter identification method suitable for the PAT and PPT modes. Comparing the HEC torques obtained by the dynamic model with the real torques measured by torque sensors, the root mean square error (RMSE) can be kept within 13% in both PAT and PPT modes. A calibration experiment was intended to further verify the accuracy of dynamic parameter identification. The theoretical torque of the load calculated by the dynamic model, is compared with the difference calculated by parameter identification. The trends and peaks of the two curves are similar, and there are also errors caused by experimental measurements. Furthermore, this paper proposes a prediction model of the patient's height and weight and HEC dynamics parameters in the PPT mode. The RMSE of the elbow and shoulder joints of the prediction model is 9.5% and 13.3%. The proposed HEC dynamic model is helpful to provide different training effects in the PAT and PPT mode and optimal training and assistance for stroke patients.</description><subject>Coupling</subject><subject>Dynamic models</subject><subject>Dynamics</subject><subject>Elbow (anatomy)</subject><subject>Exoskeletons</subject><subject>Human-exoskeleton coupling dynamics</subject><subject>Identification methods</subject><subject>Mathematical model</subject><subject>Modelling</subject><subject>Musculoskeletal system</subject><subject>Parameter identification</subject><subject>Prediction models</subject><subject>Rehabilitation</subject><subject>rehabilitation training</subject><subject>Robots</subject><subject>Root-mean-square errors</subject><subject>Stroke (medical condition)</subject><subject>Torque</subject><subject>Torquemeters</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBIINgv2CUS546k6VeOqIwPaRMS286RmziQ0TUlbSX492QUIXJxZPu9Z_tF0ZzRBWNU3NxW1XKzWSQ0YQtOi6Qo2Ul0kbBcxDzj-em__3k06_s9Da8Mqay4iPzjeIA2Xn66_h0bHFxLKjd2jW1fyd1XCwereuIMAbIem8HGa6eRbN_QQ4fjYBX5jzTOk13XoScre6jJC75BbRs7wGBDdevBtoH3Kjoz0PQ4-42X0e5-ua0e49Xzw1N1u4pVSsshLozWLFcmKQQaRnWtFBgjQAmTmqQGrTNIdU4BlUJUJUtrzLOiEJoplZmSX0ZPE692sJedtwfwX9KBlT8J518l-LBCg5IWLOcmXMSoOk0UF7VhKaVZmbKgy1ngup64Ou8-RuwHuXejb8P4MsmYoCWnGQ1dfOpS3vW9R_Onyqg8eiUnr-TRK_nrVUDNJ5RFxD-ECPplUP4GA5WSig</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Xie, Qiaolian</creator><creator>Meng, Qiaoling</creator><creator>Zeng, Qingxin</creator><creator>Fan, Yuanjie</creator><creator>Dai, Yue</creator><creator>Yu, Hongliu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0240-4004</orcidid><orcidid>https://orcid.org/0000-0001-6886-5498</orcidid><orcidid>https://orcid.org/0000-0003-1171-5987</orcidid></search><sort><creationdate>2021</creationdate><title>Human-Exoskeleton Coupling Dynamics of a Multi-Mode Therapeutic Exoskeleton for Upper Limb Rehabilitation Training</title><author>Xie, Qiaolian ; Meng, Qiaoling ; Zeng, Qingxin ; Fan, Yuanjie ; Dai, Yue ; Yu, Hongliu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7fdd16cf279ef10dbccaff9ac9f4f2badd5a4d60aecceec814be65779d1cc5f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coupling</topic><topic>Dynamic models</topic><topic>Dynamics</topic><topic>Elbow (anatomy)</topic><topic>Exoskeletons</topic><topic>Human-exoskeleton coupling dynamics</topic><topic>Identification methods</topic><topic>Mathematical model</topic><topic>Modelling</topic><topic>Musculoskeletal system</topic><topic>Parameter identification</topic><topic>Prediction models</topic><topic>Rehabilitation</topic><topic>rehabilitation training</topic><topic>Robots</topic><topic>Root-mean-square errors</topic><topic>Stroke (medical condition)</topic><topic>Torque</topic><topic>Torquemeters</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Qiaolian</creatorcontrib><creatorcontrib>Meng, Qiaoling</creatorcontrib><creatorcontrib>Zeng, Qingxin</creatorcontrib><creatorcontrib>Fan, Yuanjie</creatorcontrib><creatorcontrib>Dai, Yue</creatorcontrib><creatorcontrib>Yu, Hongliu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Qiaolian</au><au>Meng, Qiaoling</au><au>Zeng, Qingxin</au><au>Fan, Yuanjie</au><au>Dai, Yue</au><au>Yu, Hongliu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human-Exoskeleton Coupling Dynamics of a Multi-Mode Therapeutic Exoskeleton for Upper Limb Rehabilitation Training</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>61998</spage><epage>62007</epage><pages>61998-62007</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The purpose of this study is to establish the human-exoskeleton coupling (HEC) dynamic model of the upper limb exoskeleton, overcome the difficulties of dynamic modeling caused by the differences of individual and disease conditions and the complexity of musculoskeletal system, to achieve early intervention and optimal assistance for stroke patients. This paper proposes a method of HEC dynamics modeling, and analyzes the HEC dynamics in the patient-active training (PAT) and patient-passive training (PPT) mode, and designs a step-by-step dynamic parameter identification method suitable for the PAT and PPT modes. Comparing the HEC torques obtained by the dynamic model with the real torques measured by torque sensors, the root mean square error (RMSE) can be kept within 13% in both PAT and PPT modes. A calibration experiment was intended to further verify the accuracy of dynamic parameter identification. The theoretical torque of the load calculated by the dynamic model, is compared with the difference calculated by parameter identification. The trends and peaks of the two curves are similar, and there are also errors caused by experimental measurements. Furthermore, this paper proposes a prediction model of the patient's height and weight and HEC dynamics parameters in the PPT mode. The RMSE of the elbow and shoulder joints of the prediction model is 9.5% and 13.3%. The proposed HEC dynamic model is helpful to provide different training effects in the PAT and PPT mode and optimal training and assistance for stroke patients.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3072781</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0240-4004</orcidid><orcidid>https://orcid.org/0000-0001-6886-5498</orcidid><orcidid>https://orcid.org/0000-0003-1171-5987</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.61998-62007
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_07163f695fcb42c39bf14005841dbc31
source IEEE Open Access Journals
subjects Coupling
Dynamic models
Dynamics
Elbow (anatomy)
Exoskeletons
Human-exoskeleton coupling dynamics
Identification methods
Mathematical model
Modelling
Musculoskeletal system
Parameter identification
Prediction models
Rehabilitation
rehabilitation training
Robots
Root-mean-square errors
Stroke (medical condition)
Torque
Torquemeters
Training
title Human-Exoskeleton Coupling Dynamics of a Multi-Mode Therapeutic Exoskeleton for Upper Limb Rehabilitation Training
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human-Exoskeleton%20Coupling%20Dynamics%20of%20a%20Multi-Mode%20Therapeutic%20Exoskeleton%20for%20Upper%20Limb%20Rehabilitation%20Training&rft.jtitle=IEEE%20access&rft.au=Xie,%20Qiaolian&rft.date=2021&rft.volume=9&rft.spage=61998&rft.epage=62007&rft.pages=61998-62007&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3072781&rft_dat=%3Cproquest_doaj_%3E2519083050%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-7fdd16cf279ef10dbccaff9ac9f4f2badd5a4d60aecceec814be65779d1cc5f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2519083050&rft_id=info:pmid/&rft_ieee_id=9400831&rfr_iscdi=true