Loading…

Room temperature exciton–polariton Bose–Einstein condensation in organic single-crystal microribbon cavities

Exciton–polariton Bose–Einstein condensation (EP BEC) is of crucial importance for the development of coherent light sources and optical logic elements, as it creates a new state of matter with coherent nature and nonlinear behaviors. The demand for room temperature EP BEC has driven the development...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-06, Vol.12 (1), p.3265-3265, Article 3265
Main Authors: Tang, Ji, Zhang, Jian, Lv, Yuanchao, Wang, Hong, Xu, Fa Feng, Zhang, Chuang, Sun, Liaoxin, Yao, Jiannian, Zhao, Yong Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Exciton–polariton Bose–Einstein condensation (EP BEC) is of crucial importance for the development of coherent light sources and optical logic elements, as it creates a new state of matter with coherent nature and nonlinear behaviors. The demand for room temperature EP BEC has driven the development of organic polaritons because of the large binding energies of Frenkel excitons in organic materials. However, the reliance on external high-finesse microcavities for organic EP BEC results in poor compactness and integrability of devices, which restricts their practical applications in on-chip integration. Here, we demonstrate room temperature EP BEC in organic single-crystal microribbon natural cavities. The regularly shaped microribbons serve as waveguide Fabry–Pérot microcavities, in which efficient strong coupling between Frenkel excitons and photons leads to the generation of EPs at room temperature. The large exciton–photon coupling strength due to high exciton densities facilitates the achievement of EP BEC. Taking advantages of interactions in EP condensates and dimension confinement effects, we demonstrate the realization of controllable output of coherent light from the microribbons. We hope that the results will provide a useful enlightenment for using organic single crystals to construct miniaturized polaritonic devices. The use of room temperature exciton–polariton Bose–Einstein condensation is limited by the need for external high-finesse microcavities. The authors generate room temperature EPs with single-crystal microribbons as waveguide Fabry–Pérot microcavities, and demonstrate controllable output of coherent light.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-23524-y