Loading…

Endothelial Lipase Modulates Paraoxonase 1 Content and Arylesterase Activity of HDL

Endothelial lipase (EL) is a strong modulator of the high-density lipoprotein (HDL) structure, composition, and function. Here, we examined the impact of EL on HDL paraoxonase 1 (PON1) content and arylesterase (AE) activity in vitro and in vivo. The incubation of HDL with EL-overexpressing HepG2 cel...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2021-01, Vol.22 (2), p.719
Main Authors: Schilcher, Irene, Stadler, Julia T, Lechleitner, Margarete, Hrzenjak, Andelko, Berghold, Andrea, Pregartner, Gudrun, Lhomme, Marie, Holzer, Michael, Korbelius, Melanie, Reichmann, Florian, Springer, Anna, Wadsack, Christian, Madl, Tobias, Kratky, Dagmar, Kontush, Anatol, Marsche, Gunther, Frank, Saša
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Endothelial lipase (EL) is a strong modulator of the high-density lipoprotein (HDL) structure, composition, and function. Here, we examined the impact of EL on HDL paraoxonase 1 (PON1) content and arylesterase (AE) activity in vitro and in vivo. The incubation of HDL with EL-overexpressing HepG2 cells decreased HDL size, PON1 content, and AE activity. The EL modification of HDL did not diminish the capacity of HDL to associate with PON1 when EL-modified HDL was incubated with PON1-overexpressing cells. The overexpression of EL in mice significantly decreased HDL serum levels but unexpectedly increased HDL PON1 content and HDL AE activity. Enzymatically inactive EL had no effect on the PON1 content of HDL in mice. In healthy subjects, EL serum levels were not significantly correlated with HDL levels. However, HDL PON1 content was positively associated with EL serum levels. The EL-induced changes in the HDL-lipid composition were not linked to the HDL PON1 content. We conclude that primarily, the interaction of enzymatically active EL with HDL, rather than EL-induced alterations in HDL size and composition, causes PON1 displacement from HDL in vitro. In vivo, the EL-mediated reduction of HDL serum levels and the consequently increased PON1-to-HDL ratio in serum increase HDL PON1 content and AE activity in mice. In humans, additional mechanisms appear to underlie the association of EL serum levels and HDL PON1 content.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22020719