Loading…

Highway digital twin-enabled Autonomous Maintenance Plant: a perspective

The importance of automating pavement maintenance tasks for highway systems has garnered interest from both industry and academia. Despite significant research efforts and promising demonstrations being devoted to reaching a level of semi-automation featuring digital sensing and inspection, site mai...

Full description

Saved in:
Bibliographic Details
Published in:Data-Centric Engineering (Online) 2024-01, Vol.5, Article e24
Main Authors: Xu, Jie, Anvo, N’Zebo R., Taha-Abdalgadir, Hussameldin, d’Avigneau, Alix M., Palin, Damian, Wei, Ran, Hadjidemetriou, Georgios, Schaefer, Samuel, de Silva, Lavindra, Al-Tabbaa, Abir, Iida, Fumiya, Brilakis, Ioannis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c252t-dd3f0c7eb6ecc1aa2eb0862dbf9dcd8f0d8fded372fe65563084b4166832fa463
container_end_page
container_issue
container_start_page
container_title Data-Centric Engineering (Online)
container_volume 5
creator Xu, Jie
Anvo, N’Zebo R.
Taha-Abdalgadir, Hussameldin
d’Avigneau, Alix M.
Palin, Damian
Wei, Ran
Hadjidemetriou, Georgios
Schaefer, Samuel
de Silva, Lavindra
Al-Tabbaa, Abir
Iida, Fumiya
Brilakis, Ioannis
description The importance of automating pavement maintenance tasks for highway systems has garnered interest from both industry and academia. Despite significant research efforts and promising demonstrations being devoted to reaching a level of semi-automation featuring digital sensing and inspection, site maintenance work still requires manual processes using special vehicles and equipment, reflecting a clear gap to transition to fully autonomous maintenance. This paper reviews the current progress in pavement maintenance automation in terms of inspection and repair operations, followed by a discussion of three key technical challenges related to robotic sensing, control, and actuation. To address these challenges, we propose a conceptual solution we term Autonomous Maintenance Plant (AMP), mainly consisting of five modules for sensing, actuation, control, power supply, and mobility. This AMP concept is part of the “Digital Roads” project’s cyber-physical platform where a road digital twin (DT) is created based on its physical counterpart to enable real-time condition monitoring, sensory data processing, maintenance decision making, and repair operation execution. In this platform, the AMP conducts high-resolution survey and autonomous repair operations enabled (instructed) by the road DT. This process is unmanned and completely autonomous with an expectation to create a fully robotized highway pavement maintenance system.
doi_str_mv 10.1017/dce.2024.34
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_072377e748014c29b346a37be45dd368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_072377e748014c29b346a37be45dd368</doaj_id><sourcerecordid>3120312978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-dd3f0c7eb6ecc1aa2eb0862dbf9dcd8f0d8fded372fe65563084b4166832fa463</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJgqT35BxY8ytZ8bbLrrRS1hYoe9Byyyduast2sSWrpv3drRTwM8xiGecMgdE3wlGAi76yBKcWUTxk_QyMqGM2FZOL8332JJjFuMMZUVqygxQgtFm79sdeHzLq1S7rN0t51OXS6bsFms13ynd_6XcyetevSoHcGstdWd-k-01kPIfZgkvuCK3TR6DbC5JfH6P3x4W2-yFcvT8v5bJUbWtCUW8sabCTUAowhWlOocSmorZvKGls2eIAFyyRtQBSFYLjkNSdClIw2mgs2RstTrvV6o_rgtjoclNdO_Qg-rJUOyZkWFJaUSQmSl5hwQ6uacaGZrIEXQ40hcYxuTll98J87iElt_C50Q33FCMUDKnl03Z5cJvgYAzR_XwlWx-XVsLw6Lq8YZ9-s-HWW</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120312978</pqid></control><display><type>article</type><title>Highway digital twin-enabled Autonomous Maintenance Plant: a perspective</title><source>Cambridge Journals Online</source><source>ProQuest - Publicly Available Content Database</source><creator>Xu, Jie ; Anvo, N’Zebo R. ; Taha-Abdalgadir, Hussameldin ; d’Avigneau, Alix M. ; Palin, Damian ; Wei, Ran ; Hadjidemetriou, Georgios ; Schaefer, Samuel ; de Silva, Lavindra ; Al-Tabbaa, Abir ; Iida, Fumiya ; Brilakis, Ioannis</creator><creatorcontrib>Xu, Jie ; Anvo, N’Zebo R. ; Taha-Abdalgadir, Hussameldin ; d’Avigneau, Alix M. ; Palin, Damian ; Wei, Ran ; Hadjidemetriou, Georgios ; Schaefer, Samuel ; de Silva, Lavindra ; Al-Tabbaa, Abir ; Iida, Fumiya ; Brilakis, Ioannis</creatorcontrib><description>The importance of automating pavement maintenance tasks for highway systems has garnered interest from both industry and academia. Despite significant research efforts and promising demonstrations being devoted to reaching a level of semi-automation featuring digital sensing and inspection, site maintenance work still requires manual processes using special vehicles and equipment, reflecting a clear gap to transition to fully autonomous maintenance. This paper reviews the current progress in pavement maintenance automation in terms of inspection and repair operations, followed by a discussion of three key technical challenges related to robotic sensing, control, and actuation. To address these challenges, we propose a conceptual solution we term Autonomous Maintenance Plant (AMP), mainly consisting of five modules for sensing, actuation, control, power supply, and mobility. This AMP concept is part of the “Digital Roads” project’s cyber-physical platform where a road digital twin (DT) is created based on its physical counterpart to enable real-time condition monitoring, sensory data processing, maintenance decision making, and repair operation execution. In this platform, the AMP conducts high-resolution survey and autonomous repair operations enabled (instructed) by the road DT. This process is unmanned and completely autonomous with an expectation to create a fully robotized highway pavement maintenance system.</description><identifier>ISSN: 2632-6736</identifier><identifier>EISSN: 2632-6736</identifier><identifier>DOI: 10.1017/dce.2024.34</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Accuracy ; Actuation ; Algorithms ; Artificial intelligence ; Automation ; autonomous vehicle ; Condition monitoring ; Control equipment ; Cracks ; cyber-physical platform ; Data processing ; Digital twins ; Drones ; Inspection ; inspection automation ; Literature reviews ; Materials handling ; Neural networks ; pavement maintenance ; Pavements ; Real time ; Repair ; repair automation ; road infrastructure ; Road maintenance ; Roads &amp; highways ; Robot control ; Robot sensors ; Robotics ; Robots ; Sealing compounds ; Unmanned aerial vehicles ; Vehicles</subject><ispartof>Data-Centric Engineering (Online), 2024-01, Vol.5, Article e24</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-dd3f0c7eb6ecc1aa2eb0862dbf9dcd8f0d8fded372fe65563084b4166832fa463</cites><orcidid>0000-0001-5851-4379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,37012</link.rule.ids></links><search><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Anvo, N’Zebo R.</creatorcontrib><creatorcontrib>Taha-Abdalgadir, Hussameldin</creatorcontrib><creatorcontrib>d’Avigneau, Alix M.</creatorcontrib><creatorcontrib>Palin, Damian</creatorcontrib><creatorcontrib>Wei, Ran</creatorcontrib><creatorcontrib>Hadjidemetriou, Georgios</creatorcontrib><creatorcontrib>Schaefer, Samuel</creatorcontrib><creatorcontrib>de Silva, Lavindra</creatorcontrib><creatorcontrib>Al-Tabbaa, Abir</creatorcontrib><creatorcontrib>Iida, Fumiya</creatorcontrib><creatorcontrib>Brilakis, Ioannis</creatorcontrib><title>Highway digital twin-enabled Autonomous Maintenance Plant: a perspective</title><title>Data-Centric Engineering (Online)</title><description>The importance of automating pavement maintenance tasks for highway systems has garnered interest from both industry and academia. Despite significant research efforts and promising demonstrations being devoted to reaching a level of semi-automation featuring digital sensing and inspection, site maintenance work still requires manual processes using special vehicles and equipment, reflecting a clear gap to transition to fully autonomous maintenance. This paper reviews the current progress in pavement maintenance automation in terms of inspection and repair operations, followed by a discussion of three key technical challenges related to robotic sensing, control, and actuation. To address these challenges, we propose a conceptual solution we term Autonomous Maintenance Plant (AMP), mainly consisting of five modules for sensing, actuation, control, power supply, and mobility. This AMP concept is part of the “Digital Roads” project’s cyber-physical platform where a road digital twin (DT) is created based on its physical counterpart to enable real-time condition monitoring, sensory data processing, maintenance decision making, and repair operation execution. In this platform, the AMP conducts high-resolution survey and autonomous repair operations enabled (instructed) by the road DT. This process is unmanned and completely autonomous with an expectation to create a fully robotized highway pavement maintenance system.</description><subject>Accuracy</subject><subject>Actuation</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>autonomous vehicle</subject><subject>Condition monitoring</subject><subject>Control equipment</subject><subject>Cracks</subject><subject>cyber-physical platform</subject><subject>Data processing</subject><subject>Digital twins</subject><subject>Drones</subject><subject>Inspection</subject><subject>inspection automation</subject><subject>Literature reviews</subject><subject>Materials handling</subject><subject>Neural networks</subject><subject>pavement maintenance</subject><subject>Pavements</subject><subject>Real time</subject><subject>Repair</subject><subject>repair automation</subject><subject>road infrastructure</subject><subject>Road maintenance</subject><subject>Roads &amp; highways</subject><subject>Robot control</subject><subject>Robot sensors</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sealing compounds</subject><subject>Unmanned aerial vehicles</subject><subject>Vehicles</subject><issn>2632-6736</issn><issn>2632-6736</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEUDKJgqT35BxY8ytZ8bbLrrRS1hYoe9Byyyduast2sSWrpv3drRTwM8xiGecMgdE3wlGAi76yBKcWUTxk_QyMqGM2FZOL8332JJjFuMMZUVqygxQgtFm79sdeHzLq1S7rN0t51OXS6bsFms13ynd_6XcyetevSoHcGstdWd-k-01kPIfZgkvuCK3TR6DbC5JfH6P3x4W2-yFcvT8v5bJUbWtCUW8sabCTUAowhWlOocSmorZvKGls2eIAFyyRtQBSFYLjkNSdClIw2mgs2RstTrvV6o_rgtjoclNdO_Qg-rJUOyZkWFJaUSQmSl5hwQ6uacaGZrIEXQ40hcYxuTll98J87iElt_C50Q33FCMUDKnl03Z5cJvgYAzR_XwlWx-XVsLw6Lq8YZ9-s-HWW</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Xu, Jie</creator><creator>Anvo, N’Zebo R.</creator><creator>Taha-Abdalgadir, Hussameldin</creator><creator>d’Avigneau, Alix M.</creator><creator>Palin, Damian</creator><creator>Wei, Ran</creator><creator>Hadjidemetriou, Georgios</creator><creator>Schaefer, Samuel</creator><creator>de Silva, Lavindra</creator><creator>Al-Tabbaa, Abir</creator><creator>Iida, Fumiya</creator><creator>Brilakis, Ioannis</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5851-4379</orcidid></search><sort><creationdate>20240101</creationdate><title>Highway digital twin-enabled Autonomous Maintenance Plant: a perspective</title><author>Xu, Jie ; Anvo, N’Zebo R. ; Taha-Abdalgadir, Hussameldin ; d’Avigneau, Alix M. ; Palin, Damian ; Wei, Ran ; Hadjidemetriou, Georgios ; Schaefer, Samuel ; de Silva, Lavindra ; Al-Tabbaa, Abir ; Iida, Fumiya ; Brilakis, Ioannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-dd3f0c7eb6ecc1aa2eb0862dbf9dcd8f0d8fded372fe65563084b4166832fa463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Actuation</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>autonomous vehicle</topic><topic>Condition monitoring</topic><topic>Control equipment</topic><topic>Cracks</topic><topic>cyber-physical platform</topic><topic>Data processing</topic><topic>Digital twins</topic><topic>Drones</topic><topic>Inspection</topic><topic>inspection automation</topic><topic>Literature reviews</topic><topic>Materials handling</topic><topic>Neural networks</topic><topic>pavement maintenance</topic><topic>Pavements</topic><topic>Real time</topic><topic>Repair</topic><topic>repair automation</topic><topic>road infrastructure</topic><topic>Road maintenance</topic><topic>Roads &amp; highways</topic><topic>Robot control</topic><topic>Robot sensors</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sealing compounds</topic><topic>Unmanned aerial vehicles</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Anvo, N’Zebo R.</creatorcontrib><creatorcontrib>Taha-Abdalgadir, Hussameldin</creatorcontrib><creatorcontrib>d’Avigneau, Alix M.</creatorcontrib><creatorcontrib>Palin, Damian</creatorcontrib><creatorcontrib>Wei, Ran</creatorcontrib><creatorcontrib>Hadjidemetriou, Georgios</creatorcontrib><creatorcontrib>Schaefer, Samuel</creatorcontrib><creatorcontrib>de Silva, Lavindra</creatorcontrib><creatorcontrib>Al-Tabbaa, Abir</creatorcontrib><creatorcontrib>Iida, Fumiya</creatorcontrib><creatorcontrib>Brilakis, Ioannis</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Data-Centric Engineering (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jie</au><au>Anvo, N’Zebo R.</au><au>Taha-Abdalgadir, Hussameldin</au><au>d’Avigneau, Alix M.</au><au>Palin, Damian</au><au>Wei, Ran</au><au>Hadjidemetriou, Georgios</au><au>Schaefer, Samuel</au><au>de Silva, Lavindra</au><au>Al-Tabbaa, Abir</au><au>Iida, Fumiya</au><au>Brilakis, Ioannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highway digital twin-enabled Autonomous Maintenance Plant: a perspective</atitle><jtitle>Data-Centric Engineering (Online)</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>5</volume><artnum>e24</artnum><issn>2632-6736</issn><eissn>2632-6736</eissn><abstract>The importance of automating pavement maintenance tasks for highway systems has garnered interest from both industry and academia. Despite significant research efforts and promising demonstrations being devoted to reaching a level of semi-automation featuring digital sensing and inspection, site maintenance work still requires manual processes using special vehicles and equipment, reflecting a clear gap to transition to fully autonomous maintenance. This paper reviews the current progress in pavement maintenance automation in terms of inspection and repair operations, followed by a discussion of three key technical challenges related to robotic sensing, control, and actuation. To address these challenges, we propose a conceptual solution we term Autonomous Maintenance Plant (AMP), mainly consisting of five modules for sensing, actuation, control, power supply, and mobility. This AMP concept is part of the “Digital Roads” project’s cyber-physical platform where a road digital twin (DT) is created based on its physical counterpart to enable real-time condition monitoring, sensory data processing, maintenance decision making, and repair operation execution. In this platform, the AMP conducts high-resolution survey and autonomous repair operations enabled (instructed) by the road DT. This process is unmanned and completely autonomous with an expectation to create a fully robotized highway pavement maintenance system.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/dce.2024.34</doi><orcidid>https://orcid.org/0000-0001-5851-4379</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-6736
ispartof Data-Centric Engineering (Online), 2024-01, Vol.5, Article e24
issn 2632-6736
2632-6736
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_072377e748014c29b346a37be45dd368
source Cambridge Journals Online; ProQuest - Publicly Available Content Database
subjects Accuracy
Actuation
Algorithms
Artificial intelligence
Automation
autonomous vehicle
Condition monitoring
Control equipment
Cracks
cyber-physical platform
Data processing
Digital twins
Drones
Inspection
inspection automation
Literature reviews
Materials handling
Neural networks
pavement maintenance
Pavements
Real time
Repair
repair automation
road infrastructure
Road maintenance
Roads & highways
Robot control
Robot sensors
Robotics
Robots
Sealing compounds
Unmanned aerial vehicles
Vehicles
title Highway digital twin-enabled Autonomous Maintenance Plant: a perspective
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highway%20digital%20twin-enabled%20Autonomous%20Maintenance%20Plant:%20a%20perspective&rft.jtitle=Data-Centric%20Engineering%20(Online)&rft.au=Xu,%20Jie&rft.date=2024-01-01&rft.volume=5&rft.artnum=e24&rft.issn=2632-6736&rft.eissn=2632-6736&rft_id=info:doi/10.1017/dce.2024.34&rft_dat=%3Cproquest_doaj_%3E3120312978%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-dd3f0c7eb6ecc1aa2eb0862dbf9dcd8f0d8fded372fe65563084b4166832fa463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120312978&rft_id=info:pmid/&rfr_iscdi=true