Loading…

Promotional effect of nitrogen-doped and pore structure for the direct synthesis of hydrogen peroxide from hydrogen and oxygen by Pd/C catalyst at ambient pressure

Nitrogen-doped porous carbon is potential support for directly synthesizing H2O2 from H2 and O2. Here, density functional theory (DFT) was used to study the effect of N-doped porous carbon on H2O2 directly synthesized. The theoretical calculation results showed that N-doped improved H2O2 productivit...

Full description

Saved in:
Bibliographic Details
Published in:Arabian journal of chemistry 2023-02, Vol.16 (2), p.104452, Article 104452
Main Authors: Jiang, Donghai, Shi, Yongyong, Zhou, Liming, Ma, Jun, Pan, Hongyan, Lin, Qian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nitrogen-doped porous carbon is potential support for directly synthesizing H2O2 from H2 and O2. Here, density functional theory (DFT) was used to study the effect of N-doped porous carbon on H2O2 directly synthesized. The theoretical calculation results showed that N-doped improved H2O2 productivity and H2 conversion by increasing the dispersion of Pd nanoparticles and the Pd0/Pd2+ ratio. However, N-doped decreased H2O2 selectivity by reducing oxygen's dissociation energies. The experimental results showed that adjusting the pore structure of N-doped porous carbon could improve the adverse effects of N-doping for H2O2 selectivity. The H2O2 productivity and selectivity of Pd/C catalyst with a macropore-mesoporous-microporous hierarchical porous structure were up to 328.4 molH2O2·kgcat-1·h−1 and 71.9 %, respectively, at ambient pressure. The macropore structure enhances the transfer and diffusion performance of the catalyst and effectively inhibits the effect of N-doping on OO bond dissociation, which improves H2O2 productivity and selectivity. This research provides a possible solution for designing a high-performance Pd/C catalyst to directly synthesize H2O2 from H2 and O2 at ambient pressure.
ISSN:1878-5352
1878-5379
DOI:10.1016/j.arabjc.2022.104452