Loading…

Improved photocatalytic performance of cobalt doped ZnS decorated with graphene nanostructures under ultraviolet and visible light for efficient hydrogen production

Highly dispersed Cobalt doped ZnS nanostructures were successfully fabricated on the surfaces of graphene sheets via a simple hydrothermal method. X-ray diffraction (XRD), X-ray photocurrent spectroscopy (XPS), Raman spectroscopy (RS), Fourier transform infrared spectroscopy (FTIR) and Scanning elec...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-09, Vol.14 (1), p.21632-14, Article 21632
Main Authors: Kiptarus, Joan J., Korir, Kiptiemoi K., Githinji, David N., Kiriamiti, Henry K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c422t-5758cef13ef3d2fa626dcb333675204f9166f1156b47a328fe1e997eacd95ce33
container_end_page 14
container_issue 1
container_start_page 21632
container_title Scientific reports
container_volume 14
creator Kiptarus, Joan J.
Korir, Kiptiemoi K.
Githinji, David N.
Kiriamiti, Henry K.
description Highly dispersed Cobalt doped ZnS nanostructures were successfully fabricated on the surfaces of graphene sheets via a simple hydrothermal method. X-ray diffraction (XRD), X-ray photocurrent spectroscopy (XPS), Raman spectroscopy (RS), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM) were utilized to analyze the structural characteristics of the cobalt doped ZnS decorated with graphene Co x Zn 1 - x S rGO nanostructures (NSs). UV-visible optical absorption (UV-vis) studies were conducted to investigate their optical properties. In laboratory studies utilizing water and visible light, the photocatalytic activity of Co x Zn 1 - x S rGO NSs at (x = 0, 1, 2, 4 and 6 atm.%) were evaluated. Graphite Oxide (GO) was successfully transformed into sheets of graphene and Co x Zn 1 - x S rGO NSs possessed a crystalline structure according to the findings of XRD, RS and FTIR analysis. SEM investigation showed graphene sheets enhanced with ZnS NSs possessed cuboidal, spheroidal form of structure and displayed a paper like appearance. UV-vis confirmed a noticeable rapid increase in transmittance along the UV wavelength area and confirmed a highly transparent NSs in the wavelength range of (180-800 nm). Calculations using density functional theory (DFT) revealed that the Co NSs have more negative conduction bands than ZnS, allowing for effective electron transfer from cobalt to ZnS and exhibiting a band gap decrease as Co content increased. The Co 0.04 Zn 0.96 S rGO NSs sample had the highest photocatalytic activity, measured at 7648.9 μ mol h - 1 . A combination of improved dispersion properties, greater surface area, increased absorption and enhanced transfer of photogenerated electrons, Co x Zn 1 - x S rGO NSs increased the photocatalytic hydrogen generation activity.
doi_str_mv 10.1038/s41598-024-72645-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_072aceb3c3d34b64acf3f1cf98c71d13</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_072aceb3c3d34b64acf3f1cf98c71d13</doaj_id><sourcerecordid>3106045796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-5758cef13ef3d2fa626dcb333675204f9166f1156b47a328fe1e997eacd95ce33</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEolXpC7BAltiwCcS3JF4hVHEZqRILYMPGcuzjxFXGDrYzaPo8PCieTiktC7zx5fzns8_xX1XPcfMaN7R_kxjmoq8bwuqOtIzX14-qU9KUBaGEPL63PqnOU7pqyuBEMCyeVidUkJ71TJxWvzbbJYYdGLRMIQetspr32Wm0QLQhbpXXgIJFOgxqzsiEpUi_-y_IgA5R5bL76fKExqiWCTwgr3xIOa46rxESWr2BiNY5R7VzYYaMlDdo55IbZkCzG6eMyj0IrHXagc9o2psYRvCovMsUjAv-WfXEqjnB-e18Vn378P7rxaf68vPHzcW7y1ozQnLNO95rsJiCpYZY1ZLW6IFS2na8dMMK3LYWY94OrFOU9BYwCNGB0kZwDZSeVZsj1wR1JZfotiruZVBO3hyEOEoVS3NmkE1HlIaBamooG1qmtKUWayt63WGDD6y3R9ayDlswupQW1fwA-jDi3STHsJMYs4b3vCmEV7eEGH6skLLcuqRhnpWHsCZJcdOWP-5EW6Qv_5FehTX60quDivPC67qiIkeVjiGlCPbuNbiRB1PJo6lkMZW8MZW8Lkkv7tdxl_LHQkVAj4JUQn6E-Pfu_2B_AzBy3f8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3105558577</pqid></control><display><type>article</type><title>Improved photocatalytic performance of cobalt doped ZnS decorated with graphene nanostructures under ultraviolet and visible light for efficient hydrogen production</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kiptarus, Joan J. ; Korir, Kiptiemoi K. ; Githinji, David N. ; Kiriamiti, Henry K.</creator><creatorcontrib>Kiptarus, Joan J. ; Korir, Kiptiemoi K. ; Githinji, David N. ; Kiriamiti, Henry K.</creatorcontrib><description>Highly dispersed Cobalt doped ZnS nanostructures were successfully fabricated on the surfaces of graphene sheets via a simple hydrothermal method. X-ray diffraction (XRD), X-ray photocurrent spectroscopy (XPS), Raman spectroscopy (RS), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM) were utilized to analyze the structural characteristics of the cobalt doped ZnS decorated with graphene Co x Zn 1 - x S rGO nanostructures (NSs). UV-visible optical absorption (UV-vis) studies were conducted to investigate their optical properties. In laboratory studies utilizing water and visible light, the photocatalytic activity of Co x Zn 1 - x S rGO NSs at (x = 0, 1, 2, 4 and 6 atm.%) were evaluated. Graphite Oxide (GO) was successfully transformed into sheets of graphene and Co x Zn 1 - x S rGO NSs possessed a crystalline structure according to the findings of XRD, RS and FTIR analysis. SEM investigation showed graphene sheets enhanced with ZnS NSs possessed cuboidal, spheroidal form of structure and displayed a paper like appearance. UV-vis confirmed a noticeable rapid increase in transmittance along the UV wavelength area and confirmed a highly transparent NSs in the wavelength range of (180-800 nm). Calculations using density functional theory (DFT) revealed that the Co NSs have more negative conduction bands than ZnS, allowing for effective electron transfer from cobalt to ZnS and exhibiting a band gap decrease as Co content increased. The Co 0.04 Zn 0.96 S rGO NSs sample had the highest photocatalytic activity, measured at 7648.9 μ mol h - 1 . A combination of improved dispersion properties, greater surface area, increased absorption and enhanced transfer of photogenerated electrons, Co x Zn 1 - x S rGO NSs increased the photocatalytic hydrogen generation activity.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-72645-z</identifier><identifier>PMID: 39284849</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/890 ; 639/4077/909/4086/4087 ; Absorption ; Cobalt ; Electron transfer ; Fourier transforms ; Graphene ; Humanities and Social Sciences ; Hydrogen production ; Infrared spectroscopy ; multidisciplinary ; Nanostructures ; Optical properties ; Photocatalysis ; Photocatalytic ; Raman spectroscopy ; Scanning electron microscopy ; Science ; Science (multidisciplinary) ; Spectrum analysis ; Wavelength ; X-ray diffraction ; ZnS</subject><ispartof>Scientific reports, 2024-09, Vol.14 (1), p.21632-14, Article 21632</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-5758cef13ef3d2fa626dcb333675204f9166f1156b47a328fe1e997eacd95ce33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3105558577/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3105558577?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39284849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiptarus, Joan J.</creatorcontrib><creatorcontrib>Korir, Kiptiemoi K.</creatorcontrib><creatorcontrib>Githinji, David N.</creatorcontrib><creatorcontrib>Kiriamiti, Henry K.</creatorcontrib><title>Improved photocatalytic performance of cobalt doped ZnS decorated with graphene nanostructures under ultraviolet and visible light for efficient hydrogen production</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Highly dispersed Cobalt doped ZnS nanostructures were successfully fabricated on the surfaces of graphene sheets via a simple hydrothermal method. X-ray diffraction (XRD), X-ray photocurrent spectroscopy (XPS), Raman spectroscopy (RS), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM) were utilized to analyze the structural characteristics of the cobalt doped ZnS decorated with graphene Co x Zn 1 - x S rGO nanostructures (NSs). UV-visible optical absorption (UV-vis) studies were conducted to investigate their optical properties. In laboratory studies utilizing water and visible light, the photocatalytic activity of Co x Zn 1 - x S rGO NSs at (x = 0, 1, 2, 4 and 6 atm.%) were evaluated. Graphite Oxide (GO) was successfully transformed into sheets of graphene and Co x Zn 1 - x S rGO NSs possessed a crystalline structure according to the findings of XRD, RS and FTIR analysis. SEM investigation showed graphene sheets enhanced with ZnS NSs possessed cuboidal, spheroidal form of structure and displayed a paper like appearance. UV-vis confirmed a noticeable rapid increase in transmittance along the UV wavelength area and confirmed a highly transparent NSs in the wavelength range of (180-800 nm). Calculations using density functional theory (DFT) revealed that the Co NSs have more negative conduction bands than ZnS, allowing for effective electron transfer from cobalt to ZnS and exhibiting a band gap decrease as Co content increased. The Co 0.04 Zn 0.96 S rGO NSs sample had the highest photocatalytic activity, measured at 7648.9 μ mol h - 1 . A combination of improved dispersion properties, greater surface area, increased absorption and enhanced transfer of photogenerated electrons, Co x Zn 1 - x S rGO NSs increased the photocatalytic hydrogen generation activity.</description><subject>639/301/299/890</subject><subject>639/4077/909/4086/4087</subject><subject>Absorption</subject><subject>Cobalt</subject><subject>Electron transfer</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen production</subject><subject>Infrared spectroscopy</subject><subject>multidisciplinary</subject><subject>Nanostructures</subject><subject>Optical properties</subject><subject>Photocatalysis</subject><subject>Photocatalytic</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectrum analysis</subject><subject>Wavelength</subject><subject>X-ray diffraction</subject><subject>ZnS</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1DAUhiMEolXpC7BAltiwCcS3JF4hVHEZqRILYMPGcuzjxFXGDrYzaPo8PCieTiktC7zx5fzns8_xX1XPcfMaN7R_kxjmoq8bwuqOtIzX14-qU9KUBaGEPL63PqnOU7pqyuBEMCyeVidUkJ71TJxWvzbbJYYdGLRMIQetspr32Wm0QLQhbpXXgIJFOgxqzsiEpUi_-y_IgA5R5bL76fKExqiWCTwgr3xIOa46rxESWr2BiNY5R7VzYYaMlDdo55IbZkCzG6eMyj0IrHXagc9o2psYRvCovMsUjAv-WfXEqjnB-e18Vn378P7rxaf68vPHzcW7y1ozQnLNO95rsJiCpYZY1ZLW6IFS2na8dMMK3LYWY94OrFOU9BYwCNGB0kZwDZSeVZsj1wR1JZfotiruZVBO3hyEOEoVS3NmkE1HlIaBamooG1qmtKUWayt63WGDD6y3R9ayDlswupQW1fwA-jDi3STHsJMYs4b3vCmEV7eEGH6skLLcuqRhnpWHsCZJcdOWP-5EW6Qv_5FehTX60quDivPC67qiIkeVjiGlCPbuNbiRB1PJo6lkMZW8MZW8Lkkv7tdxl_LHQkVAj4JUQn6E-Pfu_2B_AzBy3f8</recordid><startdate>20240916</startdate><enddate>20240916</enddate><creator>Kiptarus, Joan J.</creator><creator>Korir, Kiptiemoi K.</creator><creator>Githinji, David N.</creator><creator>Kiriamiti, Henry K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240916</creationdate><title>Improved photocatalytic performance of cobalt doped ZnS decorated with graphene nanostructures under ultraviolet and visible light for efficient hydrogen production</title><author>Kiptarus, Joan J. ; Korir, Kiptiemoi K. ; Githinji, David N. ; Kiriamiti, Henry K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-5758cef13ef3d2fa626dcb333675204f9166f1156b47a328fe1e997eacd95ce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/301/299/890</topic><topic>639/4077/909/4086/4087</topic><topic>Absorption</topic><topic>Cobalt</topic><topic>Electron transfer</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen production</topic><topic>Infrared spectroscopy</topic><topic>multidisciplinary</topic><topic>Nanostructures</topic><topic>Optical properties</topic><topic>Photocatalysis</topic><topic>Photocatalytic</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectrum analysis</topic><topic>Wavelength</topic><topic>X-ray diffraction</topic><topic>ZnS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiptarus, Joan J.</creatorcontrib><creatorcontrib>Korir, Kiptiemoi K.</creatorcontrib><creatorcontrib>Githinji, David N.</creatorcontrib><creatorcontrib>Kiriamiti, Henry K.</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Journals (ProQuest Database)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiptarus, Joan J.</au><au>Korir, Kiptiemoi K.</au><au>Githinji, David N.</au><au>Kiriamiti, Henry K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved photocatalytic performance of cobalt doped ZnS decorated with graphene nanostructures under ultraviolet and visible light for efficient hydrogen production</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-09-16</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>21632</spage><epage>14</epage><pages>21632-14</pages><artnum>21632</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Highly dispersed Cobalt doped ZnS nanostructures were successfully fabricated on the surfaces of graphene sheets via a simple hydrothermal method. X-ray diffraction (XRD), X-ray photocurrent spectroscopy (XPS), Raman spectroscopy (RS), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM) were utilized to analyze the structural characteristics of the cobalt doped ZnS decorated with graphene Co x Zn 1 - x S rGO nanostructures (NSs). UV-visible optical absorption (UV-vis) studies were conducted to investigate their optical properties. In laboratory studies utilizing water and visible light, the photocatalytic activity of Co x Zn 1 - x S rGO NSs at (x = 0, 1, 2, 4 and 6 atm.%) were evaluated. Graphite Oxide (GO) was successfully transformed into sheets of graphene and Co x Zn 1 - x S rGO NSs possessed a crystalline structure according to the findings of XRD, RS and FTIR analysis. SEM investigation showed graphene sheets enhanced with ZnS NSs possessed cuboidal, spheroidal form of structure and displayed a paper like appearance. UV-vis confirmed a noticeable rapid increase in transmittance along the UV wavelength area and confirmed a highly transparent NSs in the wavelength range of (180-800 nm). Calculations using density functional theory (DFT) revealed that the Co NSs have more negative conduction bands than ZnS, allowing for effective electron transfer from cobalt to ZnS and exhibiting a band gap decrease as Co content increased. The Co 0.04 Zn 0.96 S rGO NSs sample had the highest photocatalytic activity, measured at 7648.9 μ mol h - 1 . A combination of improved dispersion properties, greater surface area, increased absorption and enhanced transfer of photogenerated electrons, Co x Zn 1 - x S rGO NSs increased the photocatalytic hydrogen generation activity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39284849</pmid><doi>10.1038/s41598-024-72645-z</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2024-09, Vol.14 (1), p.21632-14, Article 21632
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_072aceb3c3d34b64acf3f1cf98c71d13
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/299/890
639/4077/909/4086/4087
Absorption
Cobalt
Electron transfer
Fourier transforms
Graphene
Humanities and Social Sciences
Hydrogen production
Infrared spectroscopy
multidisciplinary
Nanostructures
Optical properties
Photocatalysis
Photocatalytic
Raman spectroscopy
Scanning electron microscopy
Science
Science (multidisciplinary)
Spectrum analysis
Wavelength
X-ray diffraction
ZnS
title Improved photocatalytic performance of cobalt doped ZnS decorated with graphene nanostructures under ultraviolet and visible light for efficient hydrogen production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20photocatalytic%20performance%20of%20cobalt%20doped%20ZnS%20decorated%20with%20graphene%20nanostructures%20under%20ultraviolet%20and%20visible%20light%20for%20efficient%20hydrogen%20production&rft.jtitle=Scientific%20reports&rft.au=Kiptarus,%20Joan%20J.&rft.date=2024-09-16&rft.volume=14&rft.issue=1&rft.spage=21632&rft.epage=14&rft.pages=21632-14&rft.artnum=21632&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-72645-z&rft_dat=%3Cproquest_doaj_%3E3106045796%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-5758cef13ef3d2fa626dcb333675204f9166f1156b47a328fe1e997eacd95ce33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3105558577&rft_id=info:pmid/39284849&rfr_iscdi=true