Loading…

Enhanced spin–orbit torques by oxygen incorporation in tungsten films

The origin of spin–orbit torques, which are generated by the conversion of charge-to-spin currents in non-magnetic materials, is of considerable debate. One of the most interesting materials is tungsten, for which large spin–orbit torques have been found in thin films that are stabilized in the A15...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2016-02, Vol.7 (1), p.10644-10644, Article 10644
Main Authors: Demasius, Kai-Uwe, Phung, Timothy, Zhang, Weifeng, Hughes, Brian P., Yang, See-Hun, Kellock, Andrew, Han, Wei, Pushp, Aakash, Parkin, Stuart S. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c578t-60dd2cb5c70b136216cc3536e46a119d8c70987afa349fbc78e31938d356d8fc3
cites cdi_FETCH-LOGICAL-c578t-60dd2cb5c70b136216cc3536e46a119d8c70987afa349fbc78e31938d356d8fc3
container_end_page 10644
container_issue 1
container_start_page 10644
container_title Nature communications
container_volume 7
creator Demasius, Kai-Uwe
Phung, Timothy
Zhang, Weifeng
Hughes, Brian P.
Yang, See-Hun
Kellock, Andrew
Han, Wei
Pushp, Aakash
Parkin, Stuart S. P.
description The origin of spin–orbit torques, which are generated by the conversion of charge-to-spin currents in non-magnetic materials, is of considerable debate. One of the most interesting materials is tungsten, for which large spin–orbit torques have been found in thin films that are stabilized in the A15 (β-phase) structure. Here we report large spin Hall angles of up to approximately –0.5 by incorporating oxygen into tungsten. While the incorporation of oxygen into the tungsten films leads to significant changes in their microstructure and electrical resistivity, the large spin Hall angles measured are found to be remarkably insensitive to the oxygen-doping level (12–44%). The invariance of the spin Hall angle for higher oxygen concentrations with the bulk properties of the films suggests that the spin–orbit torques in this system may originate dominantly from the interface rather than from the interior of the films. When interfaced with a current-carrying heavy metal, spin orbit effects can generate a torque on the magnetization of a ferromagnet, understood as a bulk effect. Here, the authors show evidence of an interfacial contribution to such spin orbit torque in O-doped W/CoFeB thin film systems.
doi_str_mv 10.1038/ncomms10644
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0735bf42bc15418b876175510ac6d559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0735bf42bc15418b876175510ac6d559</doaj_id><sourcerecordid>3962831951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-60dd2cb5c70b136216cc3536e46a119d8c70987afa349fbc78e31938d356d8fc3</originalsourceid><addsrcrecordid>eNptkU1rFTEUhoMotrRduZcBN4LeNpl8bwQptRYKbuo6JJnMNJeZ5Jpkinfnf-g_7C8x463lVswmH-_Dcw45ALxB8BRBLM6CjdOUEWSEvACHLSRohXiLX-6dD8BJzmtYF5ZIEPIaHLRMoraF-BBcXoRbHazrmrzx4eHXfUzGl6bE9GN2uTHbJv7cDi40vlZKm5h08XG5NWUOQy416f045WPwqtdjdieP-xH4_uXi5vzr6vrb5dX55-uVpVyUFYNd11pDLYcGYdYiZi2mmDnCNEKyEzWQguteYyJ7Y7lwGEksOkxZJ3qLj8DVzttFvVab5Cedtipqr_48xDQonYq3o1OQY2p60hqLKEHCCM4QpxRBbVlHqayuTzvXZjaT66wLJenxmfR5EvytGuKdIpxjLBbB-0dBist3FTX5bN046uDinBXiTNRCUvKKvvsHXcc5hfpVC8UllITiSn3YUTbFnJPrn5pBUC3zVnvzrvTb_f6f2L_TrcDHHZBrFAaX9or-x_cb5ha2bA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767909453</pqid></control><display><type>article</type><title>Enhanced spin–orbit torques by oxygen incorporation in tungsten films</title><source>Nature Publishing Group</source><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Demasius, Kai-Uwe ; Phung, Timothy ; Zhang, Weifeng ; Hughes, Brian P. ; Yang, See-Hun ; Kellock, Andrew ; Han, Wei ; Pushp, Aakash ; Parkin, Stuart S. P.</creator><creatorcontrib>Demasius, Kai-Uwe ; Phung, Timothy ; Zhang, Weifeng ; Hughes, Brian P. ; Yang, See-Hun ; Kellock, Andrew ; Han, Wei ; Pushp, Aakash ; Parkin, Stuart S. P.</creatorcontrib><description>The origin of spin–orbit torques, which are generated by the conversion of charge-to-spin currents in non-magnetic materials, is of considerable debate. One of the most interesting materials is tungsten, for which large spin–orbit torques have been found in thin films that are stabilized in the A15 (β-phase) structure. Here we report large spin Hall angles of up to approximately –0.5 by incorporating oxygen into tungsten. While the incorporation of oxygen into the tungsten films leads to significant changes in their microstructure and electrical resistivity, the large spin Hall angles measured are found to be remarkably insensitive to the oxygen-doping level (12–44%). The invariance of the spin Hall angle for higher oxygen concentrations with the bulk properties of the films suggests that the spin–orbit torques in this system may originate dominantly from the interface rather than from the interior of the films. When interfaced with a current-carrying heavy metal, spin orbit effects can generate a torque on the magnetization of a ferromagnet, understood as a bulk effect. Here, the authors show evidence of an interfacial contribution to such spin orbit torque in O-doped W/CoFeB thin film systems.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms10644</identifier><identifier>PMID: 26912203</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/1001 ; 639/301/119/544 ; Beta phase ; Electrical resistivity ; Gas flow ; Humanities and Social Sciences ; Magnetic materials ; Metals ; multidisciplinary ; Oxygen ; Science ; Science (multidisciplinary) ; Scientific imaging ; Thin films ; Torque ; Tungsten</subject><ispartof>Nature communications, 2016-02, Vol.7 (1), p.10644-10644, Article 10644</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><rights>Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-60dd2cb5c70b136216cc3536e46a119d8c70987afa349fbc78e31938d356d8fc3</citedby><cites>FETCH-LOGICAL-c578t-60dd2cb5c70b136216cc3536e46a119d8c70987afa349fbc78e31938d356d8fc3</cites><orcidid>0000-0002-1757-4479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1767909453/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1767909453?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26912203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Demasius, Kai-Uwe</creatorcontrib><creatorcontrib>Phung, Timothy</creatorcontrib><creatorcontrib>Zhang, Weifeng</creatorcontrib><creatorcontrib>Hughes, Brian P.</creatorcontrib><creatorcontrib>Yang, See-Hun</creatorcontrib><creatorcontrib>Kellock, Andrew</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Pushp, Aakash</creatorcontrib><creatorcontrib>Parkin, Stuart S. P.</creatorcontrib><title>Enhanced spin–orbit torques by oxygen incorporation in tungsten films</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The origin of spin–orbit torques, which are generated by the conversion of charge-to-spin currents in non-magnetic materials, is of considerable debate. One of the most interesting materials is tungsten, for which large spin–orbit torques have been found in thin films that are stabilized in the A15 (β-phase) structure. Here we report large spin Hall angles of up to approximately –0.5 by incorporating oxygen into tungsten. While the incorporation of oxygen into the tungsten films leads to significant changes in their microstructure and electrical resistivity, the large spin Hall angles measured are found to be remarkably insensitive to the oxygen-doping level (12–44%). The invariance of the spin Hall angle for higher oxygen concentrations with the bulk properties of the films suggests that the spin–orbit torques in this system may originate dominantly from the interface rather than from the interior of the films. When interfaced with a current-carrying heavy metal, spin orbit effects can generate a torque on the magnetization of a ferromagnet, understood as a bulk effect. Here, the authors show evidence of an interfacial contribution to such spin orbit torque in O-doped W/CoFeB thin film systems.</description><subject>639/301/119/1001</subject><subject>639/301/119/544</subject><subject>Beta phase</subject><subject>Electrical resistivity</subject><subject>Gas flow</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic materials</subject><subject>Metals</subject><subject>multidisciplinary</subject><subject>Oxygen</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Scientific imaging</subject><subject>Thin films</subject><subject>Torque</subject><subject>Tungsten</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU1rFTEUhoMotrRduZcBN4LeNpl8bwQptRYKbuo6JJnMNJeZ5Jpkinfnf-g_7C8x463lVswmH-_Dcw45ALxB8BRBLM6CjdOUEWSEvACHLSRohXiLX-6dD8BJzmtYF5ZIEPIaHLRMoraF-BBcXoRbHazrmrzx4eHXfUzGl6bE9GN2uTHbJv7cDi40vlZKm5h08XG5NWUOQy416f045WPwqtdjdieP-xH4_uXi5vzr6vrb5dX55-uVpVyUFYNd11pDLYcGYdYiZi2mmDnCNEKyEzWQguteYyJ7Y7lwGEksOkxZJ3qLj8DVzttFvVab5Cedtipqr_48xDQonYq3o1OQY2p60hqLKEHCCM4QpxRBbVlHqayuTzvXZjaT66wLJenxmfR5EvytGuKdIpxjLBbB-0dBist3FTX5bN046uDinBXiTNRCUvKKvvsHXcc5hfpVC8UllITiSn3YUTbFnJPrn5pBUC3zVnvzrvTb_f6f2L_TrcDHHZBrFAaX9or-x_cb5ha2bA</recordid><startdate>20160225</startdate><enddate>20160225</enddate><creator>Demasius, Kai-Uwe</creator><creator>Phung, Timothy</creator><creator>Zhang, Weifeng</creator><creator>Hughes, Brian P.</creator><creator>Yang, See-Hun</creator><creator>Kellock, Andrew</creator><creator>Han, Wei</creator><creator>Pushp, Aakash</creator><creator>Parkin, Stuart S. P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1757-4479</orcidid></search><sort><creationdate>20160225</creationdate><title>Enhanced spin–orbit torques by oxygen incorporation in tungsten films</title><author>Demasius, Kai-Uwe ; Phung, Timothy ; Zhang, Weifeng ; Hughes, Brian P. ; Yang, See-Hun ; Kellock, Andrew ; Han, Wei ; Pushp, Aakash ; Parkin, Stuart S. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-60dd2cb5c70b136216cc3536e46a119d8c70987afa349fbc78e31938d356d8fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/119/1001</topic><topic>639/301/119/544</topic><topic>Beta phase</topic><topic>Electrical resistivity</topic><topic>Gas flow</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic materials</topic><topic>Metals</topic><topic>multidisciplinary</topic><topic>Oxygen</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Scientific imaging</topic><topic>Thin films</topic><topic>Torque</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demasius, Kai-Uwe</creatorcontrib><creatorcontrib>Phung, Timothy</creatorcontrib><creatorcontrib>Zhang, Weifeng</creatorcontrib><creatorcontrib>Hughes, Brian P.</creatorcontrib><creatorcontrib>Yang, See-Hun</creatorcontrib><creatorcontrib>Kellock, Andrew</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Pushp, Aakash</creatorcontrib><creatorcontrib>Parkin, Stuart S. P.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demasius, Kai-Uwe</au><au>Phung, Timothy</au><au>Zhang, Weifeng</au><au>Hughes, Brian P.</au><au>Yang, See-Hun</au><au>Kellock, Andrew</au><au>Han, Wei</au><au>Pushp, Aakash</au><au>Parkin, Stuart S. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced spin–orbit torques by oxygen incorporation in tungsten films</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-02-25</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>10644</spage><epage>10644</epage><pages>10644-10644</pages><artnum>10644</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The origin of spin–orbit torques, which are generated by the conversion of charge-to-spin currents in non-magnetic materials, is of considerable debate. One of the most interesting materials is tungsten, for which large spin–orbit torques have been found in thin films that are stabilized in the A15 (β-phase) structure. Here we report large spin Hall angles of up to approximately –0.5 by incorporating oxygen into tungsten. While the incorporation of oxygen into the tungsten films leads to significant changes in their microstructure and electrical resistivity, the large spin Hall angles measured are found to be remarkably insensitive to the oxygen-doping level (12–44%). The invariance of the spin Hall angle for higher oxygen concentrations with the bulk properties of the films suggests that the spin–orbit torques in this system may originate dominantly from the interface rather than from the interior of the films. When interfaced with a current-carrying heavy metal, spin orbit effects can generate a torque on the magnetization of a ferromagnet, understood as a bulk effect. Here, the authors show evidence of an interfacial contribution to such spin orbit torque in O-doped W/CoFeB thin film systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26912203</pmid><doi>10.1038/ncomms10644</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1757-4479</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2016-02, Vol.7 (1), p.10644-10644, Article 10644
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0735bf42bc15418b876175510ac6d559
source Nature Publishing Group; Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/119/1001
639/301/119/544
Beta phase
Electrical resistivity
Gas flow
Humanities and Social Sciences
Magnetic materials
Metals
multidisciplinary
Oxygen
Science
Science (multidisciplinary)
Scientific imaging
Thin films
Torque
Tungsten
title Enhanced spin–orbit torques by oxygen incorporation in tungsten films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20spin%E2%80%93orbit%20torques%20by%20oxygen%20incorporation%20in%20tungsten%20films&rft.jtitle=Nature%20communications&rft.au=Demasius,%20Kai-Uwe&rft.date=2016-02-25&rft.volume=7&rft.issue=1&rft.spage=10644&rft.epage=10644&rft.pages=10644-10644&rft.artnum=10644&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms10644&rft_dat=%3Cproquest_doaj_%3E3962831951%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-60dd2cb5c70b136216cc3536e46a119d8c70987afa349fbc78e31938d356d8fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1767909453&rft_id=info:pmid/26912203&rfr_iscdi=true