Loading…
Enhanced spin–orbit torques by oxygen incorporation in tungsten films
The origin of spin–orbit torques, which are generated by the conversion of charge-to-spin currents in non-magnetic materials, is of considerable debate. One of the most interesting materials is tungsten, for which large spin–orbit torques have been found in thin films that are stabilized in the A15...
Saved in:
Published in: | Nature communications 2016-02, Vol.7 (1), p.10644-10644, Article 10644 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c578t-60dd2cb5c70b136216cc3536e46a119d8c70987afa349fbc78e31938d356d8fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c578t-60dd2cb5c70b136216cc3536e46a119d8c70987afa349fbc78e31938d356d8fc3 |
container_end_page | 10644 |
container_issue | 1 |
container_start_page | 10644 |
container_title | Nature communications |
container_volume | 7 |
creator | Demasius, Kai-Uwe Phung, Timothy Zhang, Weifeng Hughes, Brian P. Yang, See-Hun Kellock, Andrew Han, Wei Pushp, Aakash Parkin, Stuart S. P. |
description | The origin of spin–orbit torques, which are generated by the conversion of charge-to-spin currents in non-magnetic materials, is of considerable debate. One of the most interesting materials is tungsten, for which large spin–orbit torques have been found in thin films that are stabilized in the A15 (β-phase) structure. Here we report large spin Hall angles of up to approximately –0.5 by incorporating oxygen into tungsten. While the incorporation of oxygen into the tungsten films leads to significant changes in their microstructure and electrical resistivity, the large spin Hall angles measured are found to be remarkably insensitive to the oxygen-doping level (12–44%). The invariance of the spin Hall angle for higher oxygen concentrations with the bulk properties of the films suggests that the spin–orbit torques in this system may originate dominantly from the interface rather than from the interior of the films.
When interfaced with a current-carrying heavy metal, spin orbit effects can generate a torque on the magnetization of a ferromagnet, understood as a bulk effect. Here, the authors show evidence of an interfacial contribution to such spin orbit torque in O-doped W/CoFeB thin film systems. |
doi_str_mv | 10.1038/ncomms10644 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0735bf42bc15418b876175510ac6d559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0735bf42bc15418b876175510ac6d559</doaj_id><sourcerecordid>3962831951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-60dd2cb5c70b136216cc3536e46a119d8c70987afa349fbc78e31938d356d8fc3</originalsourceid><addsrcrecordid>eNptkU1rFTEUhoMotrRduZcBN4LeNpl8bwQptRYKbuo6JJnMNJeZ5Jpkinfnf-g_7C8x463lVswmH-_Dcw45ALxB8BRBLM6CjdOUEWSEvACHLSRohXiLX-6dD8BJzmtYF5ZIEPIaHLRMoraF-BBcXoRbHazrmrzx4eHXfUzGl6bE9GN2uTHbJv7cDi40vlZKm5h08XG5NWUOQy416f045WPwqtdjdieP-xH4_uXi5vzr6vrb5dX55-uVpVyUFYNd11pDLYcGYdYiZi2mmDnCNEKyEzWQguteYyJ7Y7lwGEksOkxZJ3qLj8DVzttFvVab5Cedtipqr_48xDQonYq3o1OQY2p60hqLKEHCCM4QpxRBbVlHqayuTzvXZjaT66wLJenxmfR5EvytGuKdIpxjLBbB-0dBist3FTX5bN046uDinBXiTNRCUvKKvvsHXcc5hfpVC8UllITiSn3YUTbFnJPrn5pBUC3zVnvzrvTb_f6f2L_TrcDHHZBrFAaX9or-x_cb5ha2bA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767909453</pqid></control><display><type>article</type><title>Enhanced spin–orbit torques by oxygen incorporation in tungsten films</title><source>Nature Publishing Group</source><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Demasius, Kai-Uwe ; Phung, Timothy ; Zhang, Weifeng ; Hughes, Brian P. ; Yang, See-Hun ; Kellock, Andrew ; Han, Wei ; Pushp, Aakash ; Parkin, Stuart S. P.</creator><creatorcontrib>Demasius, Kai-Uwe ; Phung, Timothy ; Zhang, Weifeng ; Hughes, Brian P. ; Yang, See-Hun ; Kellock, Andrew ; Han, Wei ; Pushp, Aakash ; Parkin, Stuart S. P.</creatorcontrib><description>The origin of spin–orbit torques, which are generated by the conversion of charge-to-spin currents in non-magnetic materials, is of considerable debate. One of the most interesting materials is tungsten, for which large spin–orbit torques have been found in thin films that are stabilized in the A15 (β-phase) structure. Here we report large spin Hall angles of up to approximately –0.5 by incorporating oxygen into tungsten. While the incorporation of oxygen into the tungsten films leads to significant changes in their microstructure and electrical resistivity, the large spin Hall angles measured are found to be remarkably insensitive to the oxygen-doping level (12–44%). The invariance of the spin Hall angle for higher oxygen concentrations with the bulk properties of the films suggests that the spin–orbit torques in this system may originate dominantly from the interface rather than from the interior of the films.
When interfaced with a current-carrying heavy metal, spin orbit effects can generate a torque on the magnetization of a ferromagnet, understood as a bulk effect. Here, the authors show evidence of an interfacial contribution to such spin orbit torque in O-doped W/CoFeB thin film systems.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms10644</identifier><identifier>PMID: 26912203</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/1001 ; 639/301/119/544 ; Beta phase ; Electrical resistivity ; Gas flow ; Humanities and Social Sciences ; Magnetic materials ; Metals ; multidisciplinary ; Oxygen ; Science ; Science (multidisciplinary) ; Scientific imaging ; Thin films ; Torque ; Tungsten</subject><ispartof>Nature communications, 2016-02, Vol.7 (1), p.10644-10644, Article 10644</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Feb 2016</rights><rights>Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-60dd2cb5c70b136216cc3536e46a119d8c70987afa349fbc78e31938d356d8fc3</citedby><cites>FETCH-LOGICAL-c578t-60dd2cb5c70b136216cc3536e46a119d8c70987afa349fbc78e31938d356d8fc3</cites><orcidid>0000-0002-1757-4479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1767909453/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1767909453?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26912203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Demasius, Kai-Uwe</creatorcontrib><creatorcontrib>Phung, Timothy</creatorcontrib><creatorcontrib>Zhang, Weifeng</creatorcontrib><creatorcontrib>Hughes, Brian P.</creatorcontrib><creatorcontrib>Yang, See-Hun</creatorcontrib><creatorcontrib>Kellock, Andrew</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Pushp, Aakash</creatorcontrib><creatorcontrib>Parkin, Stuart S. P.</creatorcontrib><title>Enhanced spin–orbit torques by oxygen incorporation in tungsten films</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The origin of spin–orbit torques, which are generated by the conversion of charge-to-spin currents in non-magnetic materials, is of considerable debate. One of the most interesting materials is tungsten, for which large spin–orbit torques have been found in thin films that are stabilized in the A15 (β-phase) structure. Here we report large spin Hall angles of up to approximately –0.5 by incorporating oxygen into tungsten. While the incorporation of oxygen into the tungsten films leads to significant changes in their microstructure and electrical resistivity, the large spin Hall angles measured are found to be remarkably insensitive to the oxygen-doping level (12–44%). The invariance of the spin Hall angle for higher oxygen concentrations with the bulk properties of the films suggests that the spin–orbit torques in this system may originate dominantly from the interface rather than from the interior of the films.
When interfaced with a current-carrying heavy metal, spin orbit effects can generate a torque on the magnetization of a ferromagnet, understood as a bulk effect. Here, the authors show evidence of an interfacial contribution to such spin orbit torque in O-doped W/CoFeB thin film systems.</description><subject>639/301/119/1001</subject><subject>639/301/119/544</subject><subject>Beta phase</subject><subject>Electrical resistivity</subject><subject>Gas flow</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic materials</subject><subject>Metals</subject><subject>multidisciplinary</subject><subject>Oxygen</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Scientific imaging</subject><subject>Thin films</subject><subject>Torque</subject><subject>Tungsten</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU1rFTEUhoMotrRduZcBN4LeNpl8bwQptRYKbuo6JJnMNJeZ5Jpkinfnf-g_7C8x463lVswmH-_Dcw45ALxB8BRBLM6CjdOUEWSEvACHLSRohXiLX-6dD8BJzmtYF5ZIEPIaHLRMoraF-BBcXoRbHazrmrzx4eHXfUzGl6bE9GN2uTHbJv7cDi40vlZKm5h08XG5NWUOQy416f045WPwqtdjdieP-xH4_uXi5vzr6vrb5dX55-uVpVyUFYNd11pDLYcGYdYiZi2mmDnCNEKyEzWQguteYyJ7Y7lwGEksOkxZJ3qLj8DVzttFvVab5Cedtipqr_48xDQonYq3o1OQY2p60hqLKEHCCM4QpxRBbVlHqayuTzvXZjaT66wLJenxmfR5EvytGuKdIpxjLBbB-0dBist3FTX5bN046uDinBXiTNRCUvKKvvsHXcc5hfpVC8UllITiSn3YUTbFnJPrn5pBUC3zVnvzrvTb_f6f2L_TrcDHHZBrFAaX9or-x_cb5ha2bA</recordid><startdate>20160225</startdate><enddate>20160225</enddate><creator>Demasius, Kai-Uwe</creator><creator>Phung, Timothy</creator><creator>Zhang, Weifeng</creator><creator>Hughes, Brian P.</creator><creator>Yang, See-Hun</creator><creator>Kellock, Andrew</creator><creator>Han, Wei</creator><creator>Pushp, Aakash</creator><creator>Parkin, Stuart S. P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1757-4479</orcidid></search><sort><creationdate>20160225</creationdate><title>Enhanced spin–orbit torques by oxygen incorporation in tungsten films</title><author>Demasius, Kai-Uwe ; Phung, Timothy ; Zhang, Weifeng ; Hughes, Brian P. ; Yang, See-Hun ; Kellock, Andrew ; Han, Wei ; Pushp, Aakash ; Parkin, Stuart S. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-60dd2cb5c70b136216cc3536e46a119d8c70987afa349fbc78e31938d356d8fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/119/1001</topic><topic>639/301/119/544</topic><topic>Beta phase</topic><topic>Electrical resistivity</topic><topic>Gas flow</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic materials</topic><topic>Metals</topic><topic>multidisciplinary</topic><topic>Oxygen</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Scientific imaging</topic><topic>Thin films</topic><topic>Torque</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demasius, Kai-Uwe</creatorcontrib><creatorcontrib>Phung, Timothy</creatorcontrib><creatorcontrib>Zhang, Weifeng</creatorcontrib><creatorcontrib>Hughes, Brian P.</creatorcontrib><creatorcontrib>Yang, See-Hun</creatorcontrib><creatorcontrib>Kellock, Andrew</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Pushp, Aakash</creatorcontrib><creatorcontrib>Parkin, Stuart S. P.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demasius, Kai-Uwe</au><au>Phung, Timothy</au><au>Zhang, Weifeng</au><au>Hughes, Brian P.</au><au>Yang, See-Hun</au><au>Kellock, Andrew</au><au>Han, Wei</au><au>Pushp, Aakash</au><au>Parkin, Stuart S. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced spin–orbit torques by oxygen incorporation in tungsten films</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-02-25</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>10644</spage><epage>10644</epage><pages>10644-10644</pages><artnum>10644</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The origin of spin–orbit torques, which are generated by the conversion of charge-to-spin currents in non-magnetic materials, is of considerable debate. One of the most interesting materials is tungsten, for which large spin–orbit torques have been found in thin films that are stabilized in the A15 (β-phase) structure. Here we report large spin Hall angles of up to approximately –0.5 by incorporating oxygen into tungsten. While the incorporation of oxygen into the tungsten films leads to significant changes in their microstructure and electrical resistivity, the large spin Hall angles measured are found to be remarkably insensitive to the oxygen-doping level (12–44%). The invariance of the spin Hall angle for higher oxygen concentrations with the bulk properties of the films suggests that the spin–orbit torques in this system may originate dominantly from the interface rather than from the interior of the films.
When interfaced with a current-carrying heavy metal, spin orbit effects can generate a torque on the magnetization of a ferromagnet, understood as a bulk effect. Here, the authors show evidence of an interfacial contribution to such spin orbit torque in O-doped W/CoFeB thin film systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26912203</pmid><doi>10.1038/ncomms10644</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1757-4479</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2016-02, Vol.7 (1), p.10644-10644, Article 10644 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0735bf42bc15418b876175510ac6d559 |
source | Nature Publishing Group; Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/119/1001 639/301/119/544 Beta phase Electrical resistivity Gas flow Humanities and Social Sciences Magnetic materials Metals multidisciplinary Oxygen Science Science (multidisciplinary) Scientific imaging Thin films Torque Tungsten |
title | Enhanced spin–orbit torques by oxygen incorporation in tungsten films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20spin%E2%80%93orbit%20torques%20by%20oxygen%20incorporation%20in%20tungsten%20films&rft.jtitle=Nature%20communications&rft.au=Demasius,%20Kai-Uwe&rft.date=2016-02-25&rft.volume=7&rft.issue=1&rft.spage=10644&rft.epage=10644&rft.pages=10644-10644&rft.artnum=10644&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms10644&rft_dat=%3Cproquest_doaj_%3E3962831951%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-60dd2cb5c70b136216cc3536e46a119d8c70987afa349fbc78e31938d356d8fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1767909453&rft_id=info:pmid/26912203&rfr_iscdi=true |