Loading…
Exploring anharmonic lattice dynamics and dielectric relations in niobate perovskites from first-principles self-consistent phonon calculations
Group I niobates (KNbO 3 and NaNbO 3 ) are promising lead-free alternatives for high-performance energy storage applications. Despite their potential, their complex phase transitions arising from temperature-dependent phonon softening and anharmonic effects on dielectric properties remain poorly exp...
Saved in:
Published in: | npj computational materials 2023-08, Vol.9 (1), p.154-10, Article 154 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Group I niobates (KNbO
3
and NaNbO
3
) are promising lead-free alternatives for high-performance energy storage applications. Despite their potential, their complex phase transitions arising from temperature-dependent phonon softening and anharmonic effects on dielectric properties remain poorly explored. In this study, we employ density-functional theory (DFT) and self-consistent phonon (SCP) calculations to investigate finite-temperature phonons in cubic niobate perovskites. To include explicit anharmonic vibrational effects, SCP frequencies are shifted by the bubble self-energy correction within the quasiparticle (QP) approximation, providing precise descriptions of phonon softening in these strongly anharmonic solids. We further calculate the static dielectric constant of KNbO
3
and NaNbO
3
as a function of temperature using the Lyddane-Sachs-Teller (LST) relation and QP-corrected phonon dispersions. Our theoretical results align with experimental data, offering reliable temperature-dependent phonon dispersions while considering anharmonic self-energies and thermal expansion effects, enhancing our understanding of the complex relations between lattice vibrations and phase transitions in these anharmonic oxides. |
---|---|
ISSN: | 2057-3960 2057-3960 |
DOI: | 10.1038/s41524-023-01110-8 |