Loading…
Bromodomain Protein BRD4 Accelerates Glucocorticoid Dysregulation of Bone Mass and Marrow Adiposis by Modulating H3K9 and Foxp1
Glucocorticoid provokes bone mass loss and fatty marrow, accelerating osteoporosis development. Bromodomain protein BRD4, an acetyl-histone-binding chromatin reader, regulates stem cell and tissue homeostasis. We uncovered that glucocorticoid inhibited acetyl Lys-9 at the histone 3 (H3K9ac)-binding...
Saved in:
Published in: | Cells (Basel, Switzerland) Switzerland), 2020-06, Vol.9 (6), p.1500 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-9067e1dd3d1517941d7ba2968580ebb6d95210908c7e36a6c514f7ae50a0b5d03 |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-9067e1dd3d1517941d7ba2968580ebb6d95210908c7e36a6c514f7ae50a0b5d03 |
container_end_page | |
container_issue | 6 |
container_start_page | 1500 |
container_title | Cells (Basel, Switzerland) |
container_volume | 9 |
creator | Wang, Feng-Sheng Chen, Yu-Shan Ko, Jih-Yang Kuo, Chung-Wen Ke, Huei-Jing Hsieh, Chin-Kuei Wang, Shao-Yu Kuo, Pei-Chen Jahr, Holger Lian, Wei-Shiung |
description | Glucocorticoid provokes bone mass loss and fatty marrow, accelerating osteoporosis development. Bromodomain protein BRD4, an acetyl-histone-binding chromatin reader, regulates stem cell and tissue homeostasis. We uncovered that glucocorticoid inhibited acetyl Lys-9 at the histone 3 (H3K9ac)-binding Runx2 promoter and decreased osteogenic differentiation, whereas bromodomain protein 4 (BRD4) and adipocyte formation were upregulated in bone-marrow mesenchymal progenitor cells. BRD4 knockdown improved H3K9ac occupation at the Runx2 promoter and osteogenesis, but attenuated glucocorticoid-mediated adipocyte formation together with the unaffected H3K9ac-binding PPARγ2 promoter. BRD4 regulated epigenome related to fatty acid metabolism and the forkhead box P1 (Foxp1) pathway, which occupied the PPARγ2 promoter to modulate glucocorticoid-induced adipocytic activity. In vivo, BRD4 inhibitor JQ-1 treatment mitigated methylprednisolone-induced suppression of bone mass, trabecular microstructure, mineral acquisition, and osteogenic differentiation. Foxp1 signaling, marrow fat, and adipocyte formation in glucocorticoid-treated skeleton were reversed upon JQ-1 treatment. Taken together, glucocorticoid-induced H3K9 hypoacetylation augmented BRD4 action to Foxp1, which steered mesenchymal progenitor cells toward adipocytes at the cost of osteogenic differentiation in osteoporotic skeletons. BRD4 inhibition slowed bone mass loss and marrow adiposity. Collective investigations convey a new epigenetic insight into acetyl histone reader BRD4 control of osteogenesis and adipogenesis in skeleton, and highlight the remedial effects of the BRD4 inhibitor on glucocorticoid-induced osteoporosis. |
doi_str_mv | 10.3390/cells9061500 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0782eac10e2f4e5abf13fc53990e2664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0782eac10e2f4e5abf13fc53990e2664</doaj_id><sourcerecordid>2416938961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-9067e1dd3d1517941d7ba2968580ebb6d95210908c7e36a6c514f7ae50a0b5d03</originalsourceid><addsrcrecordid>eNpdkktvEzEQgFcIRKvSG2dkiQsHAvb6tb4gJS19iFYgBGfLa3uDo11Pau8COfHXcZJSpfgyo_GnTx7PVNVLgt9RqvB76_s-KywIx_hJdVxjSWeMYfX0ID-qTnNe4XIaIgjmz6sjWnPJuZTH1Z9FggEcDCZE9CXB6EtcfD1naG6L3Ccz-owu-8mChTQGC8Gh801Ofjn1ZgwQEXRoAdGjW5MzMtGVJCX4heYurCGHjNoNugW3w-MSXdFPaoddwO81eVE960yf_el9PKm-X3z8dnY1u_l8eX02v5lZJptxVlqUnjhHHeFEKkacbE2tRMMb7NtWOMVrghVurPRUGGE5YZ00nmODW-4wPamu914HZqXXKQwmbTSYoHcFSEtttu31XmPZ1N5Ygn3dMc9N2xHaWU6VKhUhWHF92LvWUzt4Z30ck-kfSR_fxPBDL-GnlpQpiZsieHMvSHA3-TzqIeTtKE30MGVdMyIUbZQgBX39H7qCKcXyVTtKSFmrLfV2T9kEucyme3gMwXq7KPpwUQr-6rCBB_jfWtC_F325HA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416677291</pqid></control><display><type>article</type><title>Bromodomain Protein BRD4 Accelerates Glucocorticoid Dysregulation of Bone Mass and Marrow Adiposis by Modulating H3K9 and Foxp1</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Wang, Feng-Sheng ; Chen, Yu-Shan ; Ko, Jih-Yang ; Kuo, Chung-Wen ; Ke, Huei-Jing ; Hsieh, Chin-Kuei ; Wang, Shao-Yu ; Kuo, Pei-Chen ; Jahr, Holger ; Lian, Wei-Shiung</creator><creatorcontrib>Wang, Feng-Sheng ; Chen, Yu-Shan ; Ko, Jih-Yang ; Kuo, Chung-Wen ; Ke, Huei-Jing ; Hsieh, Chin-Kuei ; Wang, Shao-Yu ; Kuo, Pei-Chen ; Jahr, Holger ; Lian, Wei-Shiung</creatorcontrib><description>Glucocorticoid provokes bone mass loss and fatty marrow, accelerating osteoporosis development. Bromodomain protein BRD4, an acetyl-histone-binding chromatin reader, regulates stem cell and tissue homeostasis. We uncovered that glucocorticoid inhibited acetyl Lys-9 at the histone 3 (H3K9ac)-binding Runx2 promoter and decreased osteogenic differentiation, whereas bromodomain protein 4 (BRD4) and adipocyte formation were upregulated in bone-marrow mesenchymal progenitor cells. BRD4 knockdown improved H3K9ac occupation at the Runx2 promoter and osteogenesis, but attenuated glucocorticoid-mediated adipocyte formation together with the unaffected H3K9ac-binding PPARγ2 promoter. BRD4 regulated epigenome related to fatty acid metabolism and the forkhead box P1 (Foxp1) pathway, which occupied the PPARγ2 promoter to modulate glucocorticoid-induced adipocytic activity. In vivo, BRD4 inhibitor JQ-1 treatment mitigated methylprednisolone-induced suppression of bone mass, trabecular microstructure, mineral acquisition, and osteogenic differentiation. Foxp1 signaling, marrow fat, and adipocyte formation in glucocorticoid-treated skeleton were reversed upon JQ-1 treatment. Taken together, glucocorticoid-induced H3K9 hypoacetylation augmented BRD4 action to Foxp1, which steered mesenchymal progenitor cells toward adipocytes at the cost of osteogenic differentiation in osteoporotic skeletons. BRD4 inhibition slowed bone mass loss and marrow adiposity. Collective investigations convey a new epigenetic insight into acetyl histone reader BRD4 control of osteogenesis and adipogenesis in skeleton, and highlight the remedial effects of the BRD4 inhibitor on glucocorticoid-induced osteoporosis.</description><identifier>ISSN: 2073-4409</identifier><identifier>EISSN: 2073-4409</identifier><identifier>DOI: 10.3390/cells9061500</identifier><identifier>PMID: 32575577</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>acetylation ; Adipocytes ; Adipogenesis ; Adipogenesis - physiology ; Adipose tissue ; Antibodies ; Bone growth ; Bone marrow ; Bone Marrow - metabolism ; Bone mass ; Bones ; BRD4 ; Cancellous bone ; Cbfa-1 protein ; Cell culture ; Cell Cycle Proteins - metabolism ; Cell Differentiation - drug effects ; Chromatin ; Deoxyribonucleic acid ; DNA ; Epigenetics ; Forkhead protein ; Foxp1 ; Foxp1 protein ; Gene expression ; Genomes ; Genomics ; glucocorticoid ; Glucocorticoids ; Glucocorticoids - metabolism ; Glucocorticoids - pharmacology ; H3K9 ; Homeostasis ; Humans ; JQ-1 ; Mesenchymal Stem Cells - metabolism ; Mesenchyme ; Methylprednisolone ; Osteoblasts - drug effects ; Osteogenesis ; Osteogenesis - physiology ; Osteoporosis ; Osteoprogenitor cells ; Progenitor cells ; Proteins ; RNA polymerase ; Skeleton ; Stem cells ; Transcription Factors - metabolism</subject><ispartof>Cells (Basel, Switzerland), 2020-06, Vol.9 (6), p.1500</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-9067e1dd3d1517941d7ba2968580ebb6d95210908c7e36a6c514f7ae50a0b5d03</citedby><cites>FETCH-LOGICAL-c478t-9067e1dd3d1517941d7ba2968580ebb6d95210908c7e36a6c514f7ae50a0b5d03</cites><orcidid>0000-0001-7308-5584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2416677291/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2416677291?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32575577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Feng-Sheng</creatorcontrib><creatorcontrib>Chen, Yu-Shan</creatorcontrib><creatorcontrib>Ko, Jih-Yang</creatorcontrib><creatorcontrib>Kuo, Chung-Wen</creatorcontrib><creatorcontrib>Ke, Huei-Jing</creatorcontrib><creatorcontrib>Hsieh, Chin-Kuei</creatorcontrib><creatorcontrib>Wang, Shao-Yu</creatorcontrib><creatorcontrib>Kuo, Pei-Chen</creatorcontrib><creatorcontrib>Jahr, Holger</creatorcontrib><creatorcontrib>Lian, Wei-Shiung</creatorcontrib><title>Bromodomain Protein BRD4 Accelerates Glucocorticoid Dysregulation of Bone Mass and Marrow Adiposis by Modulating H3K9 and Foxp1</title><title>Cells (Basel, Switzerland)</title><addtitle>Cells</addtitle><description>Glucocorticoid provokes bone mass loss and fatty marrow, accelerating osteoporosis development. Bromodomain protein BRD4, an acetyl-histone-binding chromatin reader, regulates stem cell and tissue homeostasis. We uncovered that glucocorticoid inhibited acetyl Lys-9 at the histone 3 (H3K9ac)-binding Runx2 promoter and decreased osteogenic differentiation, whereas bromodomain protein 4 (BRD4) and adipocyte formation were upregulated in bone-marrow mesenchymal progenitor cells. BRD4 knockdown improved H3K9ac occupation at the Runx2 promoter and osteogenesis, but attenuated glucocorticoid-mediated adipocyte formation together with the unaffected H3K9ac-binding PPARγ2 promoter. BRD4 regulated epigenome related to fatty acid metabolism and the forkhead box P1 (Foxp1) pathway, which occupied the PPARγ2 promoter to modulate glucocorticoid-induced adipocytic activity. In vivo, BRD4 inhibitor JQ-1 treatment mitigated methylprednisolone-induced suppression of bone mass, trabecular microstructure, mineral acquisition, and osteogenic differentiation. Foxp1 signaling, marrow fat, and adipocyte formation in glucocorticoid-treated skeleton were reversed upon JQ-1 treatment. Taken together, glucocorticoid-induced H3K9 hypoacetylation augmented BRD4 action to Foxp1, which steered mesenchymal progenitor cells toward adipocytes at the cost of osteogenic differentiation in osteoporotic skeletons. BRD4 inhibition slowed bone mass loss and marrow adiposity. Collective investigations convey a new epigenetic insight into acetyl histone reader BRD4 control of osteogenesis and adipogenesis in skeleton, and highlight the remedial effects of the BRD4 inhibitor on glucocorticoid-induced osteoporosis.</description><subject>acetylation</subject><subject>Adipocytes</subject><subject>Adipogenesis</subject><subject>Adipogenesis - physiology</subject><subject>Adipose tissue</subject><subject>Antibodies</subject><subject>Bone growth</subject><subject>Bone marrow</subject><subject>Bone Marrow - metabolism</subject><subject>Bone mass</subject><subject>Bones</subject><subject>BRD4</subject><subject>Cancellous bone</subject><subject>Cbfa-1 protein</subject><subject>Cell culture</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Differentiation - drug effects</subject><subject>Chromatin</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Epigenetics</subject><subject>Forkhead protein</subject><subject>Foxp1</subject><subject>Foxp1 protein</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Genomics</subject><subject>glucocorticoid</subject><subject>Glucocorticoids</subject><subject>Glucocorticoids - metabolism</subject><subject>Glucocorticoids - pharmacology</subject><subject>H3K9</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>JQ-1</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mesenchyme</subject><subject>Methylprednisolone</subject><subject>Osteoblasts - drug effects</subject><subject>Osteogenesis</subject><subject>Osteogenesis - physiology</subject><subject>Osteoporosis</subject><subject>Osteoprogenitor cells</subject><subject>Progenitor cells</subject><subject>Proteins</subject><subject>RNA polymerase</subject><subject>Skeleton</subject><subject>Stem cells</subject><subject>Transcription Factors - metabolism</subject><issn>2073-4409</issn><issn>2073-4409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktvEzEQgFcIRKvSG2dkiQsHAvb6tb4gJS19iFYgBGfLa3uDo11Pau8COfHXcZJSpfgyo_GnTx7PVNVLgt9RqvB76_s-KywIx_hJdVxjSWeMYfX0ID-qTnNe4XIaIgjmz6sjWnPJuZTH1Z9FggEcDCZE9CXB6EtcfD1naG6L3Ccz-owu-8mChTQGC8Gh801Ofjn1ZgwQEXRoAdGjW5MzMtGVJCX4heYurCGHjNoNugW3w-MSXdFPaoddwO81eVE960yf_el9PKm-X3z8dnY1u_l8eX02v5lZJptxVlqUnjhHHeFEKkacbE2tRMMb7NtWOMVrghVurPRUGGE5YZ00nmODW-4wPamu914HZqXXKQwmbTSYoHcFSEtttu31XmPZ1N5Ygn3dMc9N2xHaWU6VKhUhWHF92LvWUzt4Z30ck-kfSR_fxPBDL-GnlpQpiZsieHMvSHA3-TzqIeTtKE30MGVdMyIUbZQgBX39H7qCKcXyVTtKSFmrLfV2T9kEucyme3gMwXq7KPpwUQr-6rCBB_jfWtC_F325HA</recordid><startdate>20200619</startdate><enddate>20200619</enddate><creator>Wang, Feng-Sheng</creator><creator>Chen, Yu-Shan</creator><creator>Ko, Jih-Yang</creator><creator>Kuo, Chung-Wen</creator><creator>Ke, Huei-Jing</creator><creator>Hsieh, Chin-Kuei</creator><creator>Wang, Shao-Yu</creator><creator>Kuo, Pei-Chen</creator><creator>Jahr, Holger</creator><creator>Lian, Wei-Shiung</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7308-5584</orcidid></search><sort><creationdate>20200619</creationdate><title>Bromodomain Protein BRD4 Accelerates Glucocorticoid Dysregulation of Bone Mass and Marrow Adiposis by Modulating H3K9 and Foxp1</title><author>Wang, Feng-Sheng ; Chen, Yu-Shan ; Ko, Jih-Yang ; Kuo, Chung-Wen ; Ke, Huei-Jing ; Hsieh, Chin-Kuei ; Wang, Shao-Yu ; Kuo, Pei-Chen ; Jahr, Holger ; Lian, Wei-Shiung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-9067e1dd3d1517941d7ba2968580ebb6d95210908c7e36a6c514f7ae50a0b5d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>acetylation</topic><topic>Adipocytes</topic><topic>Adipogenesis</topic><topic>Adipogenesis - physiology</topic><topic>Adipose tissue</topic><topic>Antibodies</topic><topic>Bone growth</topic><topic>Bone marrow</topic><topic>Bone Marrow - metabolism</topic><topic>Bone mass</topic><topic>Bones</topic><topic>BRD4</topic><topic>Cancellous bone</topic><topic>Cbfa-1 protein</topic><topic>Cell culture</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Differentiation - drug effects</topic><topic>Chromatin</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Epigenetics</topic><topic>Forkhead protein</topic><topic>Foxp1</topic><topic>Foxp1 protein</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Genomics</topic><topic>glucocorticoid</topic><topic>Glucocorticoids</topic><topic>Glucocorticoids - metabolism</topic><topic>Glucocorticoids - pharmacology</topic><topic>H3K9</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>JQ-1</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mesenchyme</topic><topic>Methylprednisolone</topic><topic>Osteoblasts - drug effects</topic><topic>Osteogenesis</topic><topic>Osteogenesis - physiology</topic><topic>Osteoporosis</topic><topic>Osteoprogenitor cells</topic><topic>Progenitor cells</topic><topic>Proteins</topic><topic>RNA polymerase</topic><topic>Skeleton</topic><topic>Stem cells</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Feng-Sheng</creatorcontrib><creatorcontrib>Chen, Yu-Shan</creatorcontrib><creatorcontrib>Ko, Jih-Yang</creatorcontrib><creatorcontrib>Kuo, Chung-Wen</creatorcontrib><creatorcontrib>Ke, Huei-Jing</creatorcontrib><creatorcontrib>Hsieh, Chin-Kuei</creatorcontrib><creatorcontrib>Wang, Shao-Yu</creatorcontrib><creatorcontrib>Kuo, Pei-Chen</creatorcontrib><creatorcontrib>Jahr, Holger</creatorcontrib><creatorcontrib>Lian, Wei-Shiung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cells (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Feng-Sheng</au><au>Chen, Yu-Shan</au><au>Ko, Jih-Yang</au><au>Kuo, Chung-Wen</au><au>Ke, Huei-Jing</au><au>Hsieh, Chin-Kuei</au><au>Wang, Shao-Yu</au><au>Kuo, Pei-Chen</au><au>Jahr, Holger</au><au>Lian, Wei-Shiung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bromodomain Protein BRD4 Accelerates Glucocorticoid Dysregulation of Bone Mass and Marrow Adiposis by Modulating H3K9 and Foxp1</atitle><jtitle>Cells (Basel, Switzerland)</jtitle><addtitle>Cells</addtitle><date>2020-06-19</date><risdate>2020</risdate><volume>9</volume><issue>6</issue><spage>1500</spage><pages>1500-</pages><issn>2073-4409</issn><eissn>2073-4409</eissn><abstract>Glucocorticoid provokes bone mass loss and fatty marrow, accelerating osteoporosis development. Bromodomain protein BRD4, an acetyl-histone-binding chromatin reader, regulates stem cell and tissue homeostasis. We uncovered that glucocorticoid inhibited acetyl Lys-9 at the histone 3 (H3K9ac)-binding Runx2 promoter and decreased osteogenic differentiation, whereas bromodomain protein 4 (BRD4) and adipocyte formation were upregulated in bone-marrow mesenchymal progenitor cells. BRD4 knockdown improved H3K9ac occupation at the Runx2 promoter and osteogenesis, but attenuated glucocorticoid-mediated adipocyte formation together with the unaffected H3K9ac-binding PPARγ2 promoter. BRD4 regulated epigenome related to fatty acid metabolism and the forkhead box P1 (Foxp1) pathway, which occupied the PPARγ2 promoter to modulate glucocorticoid-induced adipocytic activity. In vivo, BRD4 inhibitor JQ-1 treatment mitigated methylprednisolone-induced suppression of bone mass, trabecular microstructure, mineral acquisition, and osteogenic differentiation. Foxp1 signaling, marrow fat, and adipocyte formation in glucocorticoid-treated skeleton were reversed upon JQ-1 treatment. Taken together, glucocorticoid-induced H3K9 hypoacetylation augmented BRD4 action to Foxp1, which steered mesenchymal progenitor cells toward adipocytes at the cost of osteogenic differentiation in osteoporotic skeletons. BRD4 inhibition slowed bone mass loss and marrow adiposity. Collective investigations convey a new epigenetic insight into acetyl histone reader BRD4 control of osteogenesis and adipogenesis in skeleton, and highlight the remedial effects of the BRD4 inhibitor on glucocorticoid-induced osteoporosis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32575577</pmid><doi>10.3390/cells9061500</doi><orcidid>https://orcid.org/0000-0001-7308-5584</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4409 |
ispartof | Cells (Basel, Switzerland), 2020-06, Vol.9 (6), p.1500 |
issn | 2073-4409 2073-4409 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0782eac10e2f4e5abf13fc53990e2664 |
source | Publicly Available Content Database; PubMed Central |
subjects | acetylation Adipocytes Adipogenesis Adipogenesis - physiology Adipose tissue Antibodies Bone growth Bone marrow Bone Marrow - metabolism Bone mass Bones BRD4 Cancellous bone Cbfa-1 protein Cell culture Cell Cycle Proteins - metabolism Cell Differentiation - drug effects Chromatin Deoxyribonucleic acid DNA Epigenetics Forkhead protein Foxp1 Foxp1 protein Gene expression Genomes Genomics glucocorticoid Glucocorticoids Glucocorticoids - metabolism Glucocorticoids - pharmacology H3K9 Homeostasis Humans JQ-1 Mesenchymal Stem Cells - metabolism Mesenchyme Methylprednisolone Osteoblasts - drug effects Osteogenesis Osteogenesis - physiology Osteoporosis Osteoprogenitor cells Progenitor cells Proteins RNA polymerase Skeleton Stem cells Transcription Factors - metabolism |
title | Bromodomain Protein BRD4 Accelerates Glucocorticoid Dysregulation of Bone Mass and Marrow Adiposis by Modulating H3K9 and Foxp1 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bromodomain%20Protein%20BRD4%20Accelerates%20Glucocorticoid%20Dysregulation%20of%20Bone%20Mass%20and%20Marrow%20Adiposis%20by%20Modulating%20H3K9%20and%20Foxp1&rft.jtitle=Cells%20(Basel,%20Switzerland)&rft.au=Wang,%20Feng-Sheng&rft.date=2020-06-19&rft.volume=9&rft.issue=6&rft.spage=1500&rft.pages=1500-&rft.issn=2073-4409&rft.eissn=2073-4409&rft_id=info:doi/10.3390/cells9061500&rft_dat=%3Cproquest_doaj_%3E2416938961%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-9067e1dd3d1517941d7ba2968580ebb6d95210908c7e36a6c514f7ae50a0b5d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2416677291&rft_id=info:pmid/32575577&rfr_iscdi=true |