Loading…

Effect of Tribological Layer Formation on Wear Resistance of PI- and PEI-Based Nanocomposites in Point and Line Contacts

The tribological performance of both PI- and PEI-based nanocomposites, reinforced with chopped carbon fibers (CCF) and additionally loaded with halloysite nanotubes (HNTs) as well as carbon nanotubes (CNT), was investigated. Metal (GCr15 steel) counterparts were utilized in the point (“ball-on-disk”...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-03, Vol.13 (6), p.3848
Main Authors: Panin, Sergey V., Luo, Jiangkun, Buslovich, Dmitry G., Alexenko, Vladislav O., Kornienko, Lyudmila A., Byakov, Anton V., Shugurov, Artur R., Panin, Konstantin S., Berto, Filippo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The tribological performance of both PI- and PEI-based nanocomposites, reinforced with chopped carbon fibers (CCF) and additionally loaded with halloysite nanotubes (HNTs) as well as carbon nanotubes (CNT), was investigated. Metal (GCr15 steel) counterparts were utilized in the point (“ball-on-disk”) and linear (“block-on-ring”) tribological contacts. In the point contact, the PEI/10CCF/1HNT nanocomposite was characterized by the maximum wear resistance and the absence of microabrasive damage of the steel counterpart (Ra = 0.02 µm). The effect of tribological layer formation through creep and mixing mechanisms was proposed to make it possible to protect (shield) the contacting surfaces. In the linear contact at the higher Ra counterpart roughness of 0.2 µm, the tribological layer was formed on both PI- and PEI-based nanocomposites. This was governed by the development of both creep and mixing processes under the cyclic action of the tangential load transmitted from the sliding counterpart and being localized on the wear track. Due to the combination of both higher manufacturability and lower cost, the PEI-based nanocomposite loaded with CCFs and HNTs is a promising inexpensive material for fabricating components of metal–polymer friction units.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13063848