Loading…

Structural mechanism underlying primary and secondary coupling between GPCRs and the Gi/o family

Heterotrimeric G proteins are categorized into four main families based on their function and sequence, Gs, Gi/o, Gq/11, and G12/13. One receptor can couple to more than one G protein subtype, and the coupling efficiency varies depending on the GPCR-G protein pair. However, the precise mechanism und...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-06, Vol.11 (1), p.3160-12, Article 3160
Main Authors: Kim, Hee Ryung, Xu, Jun, Maeda, Shoji, Duc, Nguyen Minh, Ahn, Donghoon, Du, Yang, Chung, Ka Young
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heterotrimeric G proteins are categorized into four main families based on their function and sequence, Gs, Gi/o, Gq/11, and G12/13. One receptor can couple to more than one G protein subtype, and the coupling efficiency varies depending on the GPCR-G protein pair. However, the precise mechanism underlying different coupling efficiencies is unknown. Here, we study the structural mechanism underlying primary and secondary Gi/o coupling, using the muscarinic acetylcholine receptor type 2 (M2R) as the primary Gi/o-coupling receptor and the β 2 -adrenergic receptor (β 2 AR, which primarily couples to Gs) as the secondary Gi/o-coupling receptor. Hydrogen/deuterium exchange mass spectrometry and mutagenesis studies reveal that the engagement of the distal C-terminus of Gαi/o with the receptor differentiates primary and secondary Gi/o couplings. This study suggests that the conserved hydrophobic residue within the intracellular loop 2 of the receptor (residue 34.51) is not critical for primary Gi/o-coupling; however, it might be important for secondary Gi/o-coupling. G protein-coupled receptors (GPCRs) can couple to more than one G protein subtype, and the coupling efficiency varies depending on the GPCR-G protein pair. Here authors use hydrogen/deuterium exchange mass spectrometry and mutagenesis to study the structural mechanism underlying primary and secondary Gi/o coupling.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-16975-2