Loading…
Parameter Optimisation-Based Hybrid Reference Evapotranspiration Prediction Models: A Systematic Review of Current Implementations and Future Research Directions
A hybrid machine learning (ML) model is becoming a common trend in predicting reference evapotranspiration (ETo) research. This study aims to systematically review ML models that are integrated with meta-heuristic algorithms (i.e., parameter optimisation-based hybrid models, OBH) for predicting ETo...
Saved in:
Published in: | Atmosphere 2023-01, Vol.14 (1), p.77 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A hybrid machine learning (ML) model is becoming a common trend in predicting reference evapotranspiration (ETo) research. This study aims to systematically review ML models that are integrated with meta-heuristic algorithms (i.e., parameter optimisation-based hybrid models, OBH) for predicting ETo data. Over five years, from 2018–2022, the articles published in three reliable databases, including Web of Science, ScienceDirect, and IEEE Xplore, were considered. According to the protocol search, 1485 papers were selected. After three filters were applied, the final set contained 33 papers related to the nominated topic. The final set of papers was categorised into five groups. The first group, swarm intelligence-based algorithms, had the highest proportion of papers, (23/33) and was superior to all other algorithms. The second group (evolution computation-based algorithms), third group (physics-based algorithms), fourth group (hybrid-based algorithms), and fifth group (reviews and surveys) had (4/33), (1/33), (2/33), and (3/33), respectively. However, researchers have not treated OBH models in much detail, and there is still room for improvement by investigating both newly single and hybrid meta-heuristic algorithms. Finally, this study hopes to assist researchers in understanding the options and gaps in this line of research. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos14010077 |