Loading…

Multimodal Dependent Type Theory

We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and re...

Full description

Saved in:
Bibliographic Details
Published in:Logical methods in computer science 2021-01, Vol.17, Issue 3
Main Authors: Gratzer, Daniel, Kavvos, G. A., Nuyts, Andreas, Birkedal, Lars
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-793ef52e926a256c235de4c749515eaaa814a892c801cfd561ef23838c472a5b3
cites
container_end_page
container_issue
container_start_page
container_title Logical methods in computer science
container_volume 17, Issue 3
creator Gratzer, Daniel
Kavvos, G. A.
Nuyts, Andreas
Birkedal, Lars
description We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations.
doi_str_mv 10.46298/lmcs-17(3:11)2021
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_07e0c9691a85467f9ebe85fa9649460a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_07e0c9691a85467f9ebe85fa9649460a</doaj_id><sourcerecordid>oai_doaj_org_article_07e0c9691a85467f9ebe85fa9649460a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-793ef52e926a256c235de4c749515eaaa814a892c801cfd561ef23838c472a5b3</originalsourceid><addsrcrecordid>eNpNkLtOw0AURFcIJKKQH6ByCYVh776XDgUCkYJoQr26Wd8FR04crU3hvycPhJhmRlOc4jB2DfxOGeHdfbOJXQn2Rj4A3Aou4IyNwBleam_V-b99ySZdt-b7SAlOmBEr3r6bvt60FTbFE-1oW9G2L5bDjorlF7V5uGIXCZuOJr89Zh-z5-X0tVy8v8ynj4sySm370npJSQvywqDQJgqpK1LRKq9BEyI6UOi8iI5DTJU2QElIJ11UVqBeyTGbn7hVi-uwy_UG8xBarMPxaPNnwNzXsaHALfHojQd0WhmbPK3I6YTeKK8Mxz1LnFgxt12XKf3xgIejsnBQFsAGGQDCQZn8AZzqXaE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multimodal Dependent Type Theory</title><source>EZB Free E-Journals</source><creator>Gratzer, Daniel ; Kavvos, G. A. ; Nuyts, Andreas ; Birkedal, Lars</creator><creatorcontrib>Gratzer, Daniel ; Kavvos, G. A. ; Nuyts, Andreas ; Birkedal, Lars</creatorcontrib><description>We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations.</description><identifier>ISSN: 1860-5974</identifier><identifier>EISSN: 1860-5974</identifier><identifier>DOI: 10.46298/lmcs-17(3:11)2021</identifier><language>eng</language><publisher>Logical Methods in Computer Science e.V</publisher><subject>computer science - logic in computer science</subject><ispartof>Logical methods in computer science, 2021-01, Vol.17, Issue 3</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-793ef52e926a256c235de4c749515eaaa814a892c801cfd561ef23838c472a5b3</citedby><orcidid>0000-0002-1571-5063 ; 0000-0003-1944-0789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gratzer, Daniel</creatorcontrib><creatorcontrib>Kavvos, G. A.</creatorcontrib><creatorcontrib>Nuyts, Andreas</creatorcontrib><creatorcontrib>Birkedal, Lars</creatorcontrib><title>Multimodal Dependent Type Theory</title><title>Logical methods in computer science</title><description>We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations.</description><subject>computer science - logic in computer science</subject><issn>1860-5974</issn><issn>1860-5974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkLtOw0AURFcIJKKQH6ByCYVh776XDgUCkYJoQr26Wd8FR04crU3hvycPhJhmRlOc4jB2DfxOGeHdfbOJXQn2Rj4A3Aou4IyNwBleam_V-b99ySZdt-b7SAlOmBEr3r6bvt60FTbFE-1oW9G2L5bDjorlF7V5uGIXCZuOJr89Zh-z5-X0tVy8v8ynj4sySm370npJSQvywqDQJgqpK1LRKq9BEyI6UOi8iI5DTJU2QElIJ11UVqBeyTGbn7hVi-uwy_UG8xBarMPxaPNnwNzXsaHALfHojQd0WhmbPK3I6YTeKK8Mxz1LnFgxt12XKf3xgIejsnBQFsAGGQDCQZn8AZzqXaE</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Gratzer, Daniel</creator><creator>Kavvos, G. A.</creator><creator>Nuyts, Andreas</creator><creator>Birkedal, Lars</creator><general>Logical Methods in Computer Science e.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1571-5063</orcidid><orcidid>https://orcid.org/0000-0003-1944-0789</orcidid></search><sort><creationdate>20210101</creationdate><title>Multimodal Dependent Type Theory</title><author>Gratzer, Daniel ; Kavvos, G. A. ; Nuyts, Andreas ; Birkedal, Lars</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-793ef52e926a256c235de4c749515eaaa814a892c801cfd561ef23838c472a5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>computer science - logic in computer science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gratzer, Daniel</creatorcontrib><creatorcontrib>Kavvos, G. A.</creatorcontrib><creatorcontrib>Nuyts, Andreas</creatorcontrib><creatorcontrib>Birkedal, Lars</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Logical methods in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gratzer, Daniel</au><au>Kavvos, G. A.</au><au>Nuyts, Andreas</au><au>Birkedal, Lars</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Dependent Type Theory</atitle><jtitle>Logical methods in computer science</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>17, Issue 3</volume><issn>1860-5974</issn><eissn>1860-5974</eissn><abstract>We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations.</abstract><pub>Logical Methods in Computer Science e.V</pub><doi>10.46298/lmcs-17(3:11)2021</doi><orcidid>https://orcid.org/0000-0002-1571-5063</orcidid><orcidid>https://orcid.org/0000-0003-1944-0789</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1860-5974
ispartof Logical methods in computer science, 2021-01, Vol.17, Issue 3
issn 1860-5974
1860-5974
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_07e0c9691a85467f9ebe85fa9649460a
source EZB Free E-Journals
subjects computer science - logic in computer science
title Multimodal Dependent Type Theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Dependent%20Type%20Theory&rft.jtitle=Logical%20methods%20in%20computer%20science&rft.au=Gratzer,%20Daniel&rft.date=2021-01-01&rft.volume=17,%20Issue%203&rft.issn=1860-5974&rft.eissn=1860-5974&rft_id=info:doi/10.46298/lmcs-17(3:11)2021&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_07e0c9691a85467f9ebe85fa9649460a%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-793ef52e926a256c235de4c749515eaaa814a892c801cfd561ef23838c472a5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true