Loading…

Comparative Transcriptomics Reveal Metabolic Rather than Genetic Control of Divergent Antioxidant Metabolism in the Primary Root Elongation Zone of Water-Stressed Cotton and Maize

Under water stress, the primary root elongation zones of cotton and maize exhibit both conserved and divergent metabolic responses, including variations in sulfur and antioxidant metabolism. To explore the relative importance of metabolic and genetic controls of these responses for each species, and...

Full description

Saved in:
Bibliographic Details
Published in:Antioxidants 2023-01, Vol.12 (2), p.287
Main Authors: Kang, Jian, Sen, Sidharth, Oliver, Melvin J, Sharp, Robert E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Under water stress, the primary root elongation zones of cotton and maize exhibit both conserved and divergent metabolic responses, including variations in sulfur and antioxidant metabolism. To explore the relative importance of metabolic and genetic controls of these responses for each species, and the extent to which responses are mediated by similar gene expression networks within the framework of ortholog groups, comparative transcriptomics analyses were conducted under conditions of equivalent tissue water stress. Ortholog analysis revealed that 86% of the transcriptome response to water stress was phylogenetically unrelated between cotton and maize. Elevated transcript abundances for genes involved in abscisic acid (ABA) biosynthesis and signaling, as well as key enzymes that enable osmotic adjustment, were conserved between the species. In contrast, antioxidant responses, at least with regard to glutathione metabolism and anti-oxidative enzymes, did not exhibit such a transcript abundance adaptive signature. In particular, previously characterized differential responses of the glutathione and sulfur metabolic pathways between cotton and maize were not evident in the transcriptomic responses. The findings indicate that the antioxidant response in both species results from a metabolic acclimation to water stress, and thus represents an example of water stress-related metabolic plasticity.
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox12020287