Loading…

Macroalgae monitoring from satellite optical images using Context-sensitive level set (CSLS) model

•A novel model for satellite macroalgae monitoring.•Superior to widely-adopted methods.•Applicable to multi-source satellite images.•Accommodate complex atmosphere ocean environment. Automatically detecting macroalgae from optical remote sensing images has been a long-standing problem in ocean monit...

Full description

Saved in:
Bibliographic Details
Published in:Ecological indicators 2023-05, Vol.149, p.110160, Article 110160
Main Authors: Pan, Xinliang, Meng, Dongdong, Ren, Peng, Xiao, Yanfang, Kim, Keunyong, Mu, Bing, Tao, Xuanwen, Liu, Rongjie, Wang, Quanbin, Ryu, Joo-Hyung, Cui, Tingwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-65141ce6cfdc215333b41263005dadd81735142edd5be93b8e93b02879c35b513
cites cdi_FETCH-LOGICAL-c455t-65141ce6cfdc215333b41263005dadd81735142edd5be93b8e93b02879c35b513
container_end_page
container_issue
container_start_page 110160
container_title Ecological indicators
container_volume 149
creator Pan, Xinliang
Meng, Dongdong
Ren, Peng
Xiao, Yanfang
Kim, Keunyong
Mu, Bing
Tao, Xuanwen
Liu, Rongjie
Wang, Quanbin
Ryu, Joo-Hyung
Cui, Tingwei
description •A novel model for satellite macroalgae monitoring.•Superior to widely-adopted methods.•Applicable to multi-source satellite images.•Accommodate complex atmosphere ocean environment. Automatically detecting macroalgae from optical remote sensing images has been a long-standing problem in ocean monitoring. Existing operational spectral-based techniques tend to assign a threshold to an indicator such as Normalized Difference Vegetation Index (NDVI) to determine whether or not macroalgae exists in a pixel. This thresholding scheme relies on individual pixel features and cannot address the environment variability among different images or even across one single image. To address these limitations, we develop the unsupervised classification method taking the ecological indicator of NDVI as input by exploiting a region-based level set driven by context-sensitive energy function for macroalgae detection from optical remote sensing images. Quantitative and qualitative evaluations based on satellite optical images with various imaging time and spatial resolutions (16–250 m) from GF-1, GF-4, Landsat-8, and Aqua demonstrate the effectiveness and robustness for Ulva prolifera detection. The model is proved to be superior to the traditional NDVI thresholding method and state-of-the-art level set methods in terms of higher accuracy (Kappa coefficients 0.87–0.92) and automation (without artificial threshold/parameter adjustment). Moreover, the model has the advantage of accommodating complex environmental conditions (such as different water turbidity, thin clouds and sun glint), and can be utilized for detection of Sargassum bloom. The model could facilitate the accurate extraction of macroalgae information and thus serve disaster prevention and control. It may also be used to assist high-accuracy training data preparation for supervised classification and detect the objects with obvious texture and spectral characteristics (such as oil spills) based on customized bands combination.
doi_str_mv 10.1016/j.ecolind.2023.110160
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0802e9a6ffbe4b98865c2e6c840d4fc1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1470160X23003023</els_id><doaj_id>oai_doaj_org_article_0802e9a6ffbe4b98865c2e6c840d4fc1</doaj_id><sourcerecordid>2834231937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-65141ce6cfdc215333b41263005dadd81735142edd5be93b8e93b02879c35b513</originalsourceid><addsrcrecordid>eNqFUU1LJDEQbWQFXfUnCDm6h57NZ3f6JMugrjCLBxW8hXRSPWTIdMYkM-i_N22L171UiserV5X3quqS4AXBpPm9WYAJ3o12QTFlCzKB-Kg6JbKldYsZ_1F63uK6wC8n1c-UNrhQuq45rfp_2sSg_VoD2obR5RDduEZDDFuUdAbvXQYUdtkZ7ZHb6jUktE8TZxnGDG-5TjAml90BkIcDeJQgo6vl4-rxV1G04M-r40H7BBdf71n1fHvztPxbrx7u7pd_VrXhQuS6EYQTA40ZrKFEMMZ6TmjDMBZWWytJywqDgrWih471ciqYyrYzTPSCsLPqfta1QW_ULpZj47sK2qlPIMS10rH8w4PCElPodDMMPfC-k7IRhpbVkmPLBzNpXc1auxhe95Cy2rpkiht6hLBPikrGKSMdawtVzNTiY0oRhu_VBKspCrVRX_moKR8151Pmruc5KJ4cHESVjIPRgHURTC5Hu_8ofACXH5t8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834231937</pqid></control><display><type>article</type><title>Macroalgae monitoring from satellite optical images using Context-sensitive level set (CSLS) model</title><source>ScienceDirect Journals</source><creator>Pan, Xinliang ; Meng, Dongdong ; Ren, Peng ; Xiao, Yanfang ; Kim, Keunyong ; Mu, Bing ; Tao, Xuanwen ; Liu, Rongjie ; Wang, Quanbin ; Ryu, Joo-Hyung ; Cui, Tingwei</creator><creatorcontrib>Pan, Xinliang ; Meng, Dongdong ; Ren, Peng ; Xiao, Yanfang ; Kim, Keunyong ; Mu, Bing ; Tao, Xuanwen ; Liu, Rongjie ; Wang, Quanbin ; Ryu, Joo-Hyung ; Cui, Tingwei</creatorcontrib><description>•A novel model for satellite macroalgae monitoring.•Superior to widely-adopted methods.•Applicable to multi-source satellite images.•Accommodate complex atmosphere ocean environment. Automatically detecting macroalgae from optical remote sensing images has been a long-standing problem in ocean monitoring. Existing operational spectral-based techniques tend to assign a threshold to an indicator such as Normalized Difference Vegetation Index (NDVI) to determine whether or not macroalgae exists in a pixel. This thresholding scheme relies on individual pixel features and cannot address the environment variability among different images or even across one single image. To address these limitations, we develop the unsupervised classification method taking the ecological indicator of NDVI as input by exploiting a region-based level set driven by context-sensitive energy function for macroalgae detection from optical remote sensing images. Quantitative and qualitative evaluations based on satellite optical images with various imaging time and spatial resolutions (16–250 m) from GF-1, GF-4, Landsat-8, and Aqua demonstrate the effectiveness and robustness for Ulva prolifera detection. The model is proved to be superior to the traditional NDVI thresholding method and state-of-the-art level set methods in terms of higher accuracy (Kappa coefficients 0.87–0.92) and automation (without artificial threshold/parameter adjustment). Moreover, the model has the advantage of accommodating complex environmental conditions (such as different water turbidity, thin clouds and sun glint), and can be utilized for detection of Sargassum bloom. The model could facilitate the accurate extraction of macroalgae information and thus serve disaster prevention and control. It may also be used to assist high-accuracy training data preparation for supervised classification and detect the objects with obvious texture and spectral characteristics (such as oil spills) based on customized bands combination.</description><identifier>ISSN: 1470-160X</identifier><identifier>EISSN: 1872-7034</identifier><identifier>DOI: 10.1016/j.ecolind.2023.110160</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>automation ; Detection ; disaster preparedness ; energy ; Landsat ; Level set method ; Macroalgae ; normalized difference vegetation index ; oils ; Remote sensing ; Sargassum ; Satellite image ; texture ; turbidity ; Ulva prolifera</subject><ispartof>Ecological indicators, 2023-05, Vol.149, p.110160, Article 110160</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-65141ce6cfdc215333b41263005dadd81735142edd5be93b8e93b02879c35b513</citedby><cites>FETCH-LOGICAL-c455t-65141ce6cfdc215333b41263005dadd81735142edd5be93b8e93b02879c35b513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pan, Xinliang</creatorcontrib><creatorcontrib>Meng, Dongdong</creatorcontrib><creatorcontrib>Ren, Peng</creatorcontrib><creatorcontrib>Xiao, Yanfang</creatorcontrib><creatorcontrib>Kim, Keunyong</creatorcontrib><creatorcontrib>Mu, Bing</creatorcontrib><creatorcontrib>Tao, Xuanwen</creatorcontrib><creatorcontrib>Liu, Rongjie</creatorcontrib><creatorcontrib>Wang, Quanbin</creatorcontrib><creatorcontrib>Ryu, Joo-Hyung</creatorcontrib><creatorcontrib>Cui, Tingwei</creatorcontrib><title>Macroalgae monitoring from satellite optical images using Context-sensitive level set (CSLS) model</title><title>Ecological indicators</title><description>•A novel model for satellite macroalgae monitoring.•Superior to widely-adopted methods.•Applicable to multi-source satellite images.•Accommodate complex atmosphere ocean environment. Automatically detecting macroalgae from optical remote sensing images has been a long-standing problem in ocean monitoring. Existing operational spectral-based techniques tend to assign a threshold to an indicator such as Normalized Difference Vegetation Index (NDVI) to determine whether or not macroalgae exists in a pixel. This thresholding scheme relies on individual pixel features and cannot address the environment variability among different images or even across one single image. To address these limitations, we develop the unsupervised classification method taking the ecological indicator of NDVI as input by exploiting a region-based level set driven by context-sensitive energy function for macroalgae detection from optical remote sensing images. Quantitative and qualitative evaluations based on satellite optical images with various imaging time and spatial resolutions (16–250 m) from GF-1, GF-4, Landsat-8, and Aqua demonstrate the effectiveness and robustness for Ulva prolifera detection. The model is proved to be superior to the traditional NDVI thresholding method and state-of-the-art level set methods in terms of higher accuracy (Kappa coefficients 0.87–0.92) and automation (without artificial threshold/parameter adjustment). Moreover, the model has the advantage of accommodating complex environmental conditions (such as different water turbidity, thin clouds and sun glint), and can be utilized for detection of Sargassum bloom. The model could facilitate the accurate extraction of macroalgae information and thus serve disaster prevention and control. It may also be used to assist high-accuracy training data preparation for supervised classification and detect the objects with obvious texture and spectral characteristics (such as oil spills) based on customized bands combination.</description><subject>automation</subject><subject>Detection</subject><subject>disaster preparedness</subject><subject>energy</subject><subject>Landsat</subject><subject>Level set method</subject><subject>Macroalgae</subject><subject>normalized difference vegetation index</subject><subject>oils</subject><subject>Remote sensing</subject><subject>Sargassum</subject><subject>Satellite image</subject><subject>texture</subject><subject>turbidity</subject><subject>Ulva prolifera</subject><issn>1470-160X</issn><issn>1872-7034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFUU1LJDEQbWQFXfUnCDm6h57NZ3f6JMugrjCLBxW8hXRSPWTIdMYkM-i_N22L171UiserV5X3quqS4AXBpPm9WYAJ3o12QTFlCzKB-Kg6JbKldYsZ_1F63uK6wC8n1c-UNrhQuq45rfp_2sSg_VoD2obR5RDduEZDDFuUdAbvXQYUdtkZ7ZHb6jUktE8TZxnGDG-5TjAml90BkIcDeJQgo6vl4-rxV1G04M-r40H7BBdf71n1fHvztPxbrx7u7pd_VrXhQuS6EYQTA40ZrKFEMMZ6TmjDMBZWWytJywqDgrWih471ciqYyrYzTPSCsLPqfta1QW_ULpZj47sK2qlPIMS10rH8w4PCElPodDMMPfC-k7IRhpbVkmPLBzNpXc1auxhe95Cy2rpkiht6hLBPikrGKSMdawtVzNTiY0oRhu_VBKspCrVRX_moKR8151Pmruc5KJ4cHESVjIPRgHURTC5Hu_8ofACXH5t8</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Pan, Xinliang</creator><creator>Meng, Dongdong</creator><creator>Ren, Peng</creator><creator>Xiao, Yanfang</creator><creator>Kim, Keunyong</creator><creator>Mu, Bing</creator><creator>Tao, Xuanwen</creator><creator>Liu, Rongjie</creator><creator>Wang, Quanbin</creator><creator>Ryu, Joo-Hyung</creator><creator>Cui, Tingwei</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>DOA</scope></search><sort><creationdate>202305</creationdate><title>Macroalgae monitoring from satellite optical images using Context-sensitive level set (CSLS) model</title><author>Pan, Xinliang ; Meng, Dongdong ; Ren, Peng ; Xiao, Yanfang ; Kim, Keunyong ; Mu, Bing ; Tao, Xuanwen ; Liu, Rongjie ; Wang, Quanbin ; Ryu, Joo-Hyung ; Cui, Tingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-65141ce6cfdc215333b41263005dadd81735142edd5be93b8e93b02879c35b513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>automation</topic><topic>Detection</topic><topic>disaster preparedness</topic><topic>energy</topic><topic>Landsat</topic><topic>Level set method</topic><topic>Macroalgae</topic><topic>normalized difference vegetation index</topic><topic>oils</topic><topic>Remote sensing</topic><topic>Sargassum</topic><topic>Satellite image</topic><topic>texture</topic><topic>turbidity</topic><topic>Ulva prolifera</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Xinliang</creatorcontrib><creatorcontrib>Meng, Dongdong</creatorcontrib><creatorcontrib>Ren, Peng</creatorcontrib><creatorcontrib>Xiao, Yanfang</creatorcontrib><creatorcontrib>Kim, Keunyong</creatorcontrib><creatorcontrib>Mu, Bing</creatorcontrib><creatorcontrib>Tao, Xuanwen</creatorcontrib><creatorcontrib>Liu, Rongjie</creatorcontrib><creatorcontrib>Wang, Quanbin</creatorcontrib><creatorcontrib>Ryu, Joo-Hyung</creatorcontrib><creatorcontrib>Cui, Tingwei</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Ecological indicators</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Xinliang</au><au>Meng, Dongdong</au><au>Ren, Peng</au><au>Xiao, Yanfang</au><au>Kim, Keunyong</au><au>Mu, Bing</au><au>Tao, Xuanwen</au><au>Liu, Rongjie</au><au>Wang, Quanbin</au><au>Ryu, Joo-Hyung</au><au>Cui, Tingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macroalgae monitoring from satellite optical images using Context-sensitive level set (CSLS) model</atitle><jtitle>Ecological indicators</jtitle><date>2023-05</date><risdate>2023</risdate><volume>149</volume><spage>110160</spage><pages>110160-</pages><artnum>110160</artnum><issn>1470-160X</issn><eissn>1872-7034</eissn><abstract>•A novel model for satellite macroalgae monitoring.•Superior to widely-adopted methods.•Applicable to multi-source satellite images.•Accommodate complex atmosphere ocean environment. Automatically detecting macroalgae from optical remote sensing images has been a long-standing problem in ocean monitoring. Existing operational spectral-based techniques tend to assign a threshold to an indicator such as Normalized Difference Vegetation Index (NDVI) to determine whether or not macroalgae exists in a pixel. This thresholding scheme relies on individual pixel features and cannot address the environment variability among different images or even across one single image. To address these limitations, we develop the unsupervised classification method taking the ecological indicator of NDVI as input by exploiting a region-based level set driven by context-sensitive energy function for macroalgae detection from optical remote sensing images. Quantitative and qualitative evaluations based on satellite optical images with various imaging time and spatial resolutions (16–250 m) from GF-1, GF-4, Landsat-8, and Aqua demonstrate the effectiveness and robustness for Ulva prolifera detection. The model is proved to be superior to the traditional NDVI thresholding method and state-of-the-art level set methods in terms of higher accuracy (Kappa coefficients 0.87–0.92) and automation (without artificial threshold/parameter adjustment). Moreover, the model has the advantage of accommodating complex environmental conditions (such as different water turbidity, thin clouds and sun glint), and can be utilized for detection of Sargassum bloom. The model could facilitate the accurate extraction of macroalgae information and thus serve disaster prevention and control. It may also be used to assist high-accuracy training data preparation for supervised classification and detect the objects with obvious texture and spectral characteristics (such as oil spills) based on customized bands combination.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ecolind.2023.110160</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1470-160X
ispartof Ecological indicators, 2023-05, Vol.149, p.110160, Article 110160
issn 1470-160X
1872-7034
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0802e9a6ffbe4b98865c2e6c840d4fc1
source ScienceDirect Journals
subjects automation
Detection
disaster preparedness
energy
Landsat
Level set method
Macroalgae
normalized difference vegetation index
oils
Remote sensing
Sargassum
Satellite image
texture
turbidity
Ulva prolifera
title Macroalgae monitoring from satellite optical images using Context-sensitive level set (CSLS) model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T18%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macroalgae%20monitoring%20from%20satellite%20optical%20images%20using%20Context-sensitive%20level%20set%20(CSLS)%20model&rft.jtitle=Ecological%20indicators&rft.au=Pan,%20Xinliang&rft.date=2023-05&rft.volume=149&rft.spage=110160&rft.pages=110160-&rft.artnum=110160&rft.issn=1470-160X&rft.eissn=1872-7034&rft_id=info:doi/10.1016/j.ecolind.2023.110160&rft_dat=%3Cproquest_doaj_%3E2834231937%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-65141ce6cfdc215333b41263005dadd81735142edd5be93b8e93b02879c35b513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2834231937&rft_id=info:pmid/&rfr_iscdi=true