Loading…

Bayesian optimization with informative parametric models via sequential Monte Carlo

Bayesian optimization (BO) has been a successful approach to optimize expensive functions whose prior knowledge can be specified by means of a probabilistic model. Due to their expressiveness and tractable closed-form predictive distributions, Gaussian process (GP) surrogate models have been the def...

Full description

Saved in:
Bibliographic Details
Published in:Data-Centric Engineering (Online) 2022-01, Vol.3, Article e5
Main Authors: Oliveira, Rafael, Scalzo, Richard, Kohn, Robert, Cripps, Sally, Hardman, Kyle, Close, John, Taghavi, Nasrin, Lemckert, Charles
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c320t-f80d011ae891c7b12cf20bb117c6707c2fe16345d9698627da2a2e3bf38605bc3
container_end_page
container_issue
container_start_page
container_title Data-Centric Engineering (Online)
container_volume 3
creator Oliveira, Rafael
Scalzo, Richard
Kohn, Robert
Cripps, Sally
Hardman, Kyle
Close, John
Taghavi, Nasrin
Lemckert, Charles
description Bayesian optimization (BO) has been a successful approach to optimize expensive functions whose prior knowledge can be specified by means of a probabilistic model. Due to their expressiveness and tractable closed-form predictive distributions, Gaussian process (GP) surrogate models have been the default go-to choice when deriving BO frameworks. However, as nonparametric models, GPs offer very little in terms of interpretability and informative power when applied to model complex physical phenomena in scientific applications. In addition, the Gaussian assumption also limits the applicability of GPs to problems where the variables of interest may highly deviate from Gaussianity. In this article, we investigate an alternative modeling framework for BO which makes use of sequential Monte Carlo (SMC) to perform Bayesian inference with parametric models. We propose a BO algorithm to take advantage of SMC’s flexible posterior representations and provide methods to compensate for bias in the approximations and reduce particle degeneracy. Experimental results on simulated engineering applications in detecting water leaks and contaminant source localization are presented showing performance improvements over GP-based BO approaches.
doi_str_mv 10.1017/dce.2022.5
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_08066c1c81cd45cdb9b4f040bea50a62</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_08066c1c81cd45cdb9b4f040bea50a62</doaj_id><sourcerecordid>2637075686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-f80d011ae891c7b12cf20bb117c6707c2fe16345d9698627da2a2e3bf38605bc3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVKUXvsASN6SUtR07yREqHpWKOABna-M44CqJg-0Wla8npQhx2tVoNDuzkyTnFOYUaH5VazNnwNhcHCUTJjlLZc7l8b_9NJmFsAYAlpdcMDFJnm9wZ4LFnrgh2s5-YbSuJ582vhPbN853I7A1ZECPnYneatK52rSBbC2SYD42po8WW_Lo-mjIAn3rzpKTBttgZr9zmrze3b4sHtLV0_1ycb1KNWcQ06aAGihFU5RU5xVlumFQVZTmWuaQa9YYKnkm6lKWhWR5jQyZ4VXDCwmi0nyaLA-6tcO1Grzt0O-UQ6t-AOffFPpodWsUFCClprqgus6ErquyyhrIoDIoACUbtS4OWoN3Y6YQ1dptfD_aV-P3RjtCFnJkXR5Y2rsQvGn-rlJQ-w7U2IHad6AE_wbsBXl1</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637075686</pqid></control><display><type>article</type><title>Bayesian optimization with informative parametric models via sequential Monte Carlo</title><source>Publicly Available Content (ProQuest)</source><source>Cambridge University Press</source><creator>Oliveira, Rafael ; Scalzo, Richard ; Kohn, Robert ; Cripps, Sally ; Hardman, Kyle ; Close, John ; Taghavi, Nasrin ; Lemckert, Charles</creator><creatorcontrib>Oliveira, Rafael ; Scalzo, Richard ; Kohn, Robert ; Cripps, Sally ; Hardman, Kyle ; Close, John ; Taghavi, Nasrin ; Lemckert, Charles</creatorcontrib><description>Bayesian optimization (BO) has been a successful approach to optimize expensive functions whose prior knowledge can be specified by means of a probabilistic model. Due to their expressiveness and tractable closed-form predictive distributions, Gaussian process (GP) surrogate models have been the default go-to choice when deriving BO frameworks. However, as nonparametric models, GPs offer very little in terms of interpretability and informative power when applied to model complex physical phenomena in scientific applications. In addition, the Gaussian assumption also limits the applicability of GPs to problems where the variables of interest may highly deviate from Gaussianity. In this article, we investigate an alternative modeling framework for BO which makes use of sequential Monte Carlo (SMC) to perform Bayesian inference with parametric models. We propose a BO algorithm to take advantage of SMC’s flexible posterior representations and provide methods to compensate for bias in the approximations and reduce particle degeneracy. Experimental results on simulated engineering applications in detecting water leaks and contaminant source localization are presented showing performance improvements over GP-based BO approaches.</description><identifier>ISSN: 2632-6736</identifier><identifier>EISSN: 2632-6736</identifier><identifier>DOI: 10.1017/dce.2022.5</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Algorithms ; Approximation ; Bayesian analysis ; Bayesian inference ; Bayesian optimization ; Contaminants ; Decision making ; Disease control ; Gaussian process ; inverse problems ; Neural networks ; Optimization ; Parametric statistics ; Probabilistic models ; sequential Monte Carlo ; Statistical inference</subject><ispartof>Data-Centric Engineering (Online), 2022-01, Vol.3, Article e5</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-f80d011ae891c7b12cf20bb117c6707c2fe16345d9698627da2a2e3bf38605bc3</cites><orcidid>0000-0002-3586-5026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2637075686/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2637075686?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Oliveira, Rafael</creatorcontrib><creatorcontrib>Scalzo, Richard</creatorcontrib><creatorcontrib>Kohn, Robert</creatorcontrib><creatorcontrib>Cripps, Sally</creatorcontrib><creatorcontrib>Hardman, Kyle</creatorcontrib><creatorcontrib>Close, John</creatorcontrib><creatorcontrib>Taghavi, Nasrin</creatorcontrib><creatorcontrib>Lemckert, Charles</creatorcontrib><title>Bayesian optimization with informative parametric models via sequential Monte Carlo</title><title>Data-Centric Engineering (Online)</title><description>Bayesian optimization (BO) has been a successful approach to optimize expensive functions whose prior knowledge can be specified by means of a probabilistic model. Due to their expressiveness and tractable closed-form predictive distributions, Gaussian process (GP) surrogate models have been the default go-to choice when deriving BO frameworks. However, as nonparametric models, GPs offer very little in terms of interpretability and informative power when applied to model complex physical phenomena in scientific applications. In addition, the Gaussian assumption also limits the applicability of GPs to problems where the variables of interest may highly deviate from Gaussianity. In this article, we investigate an alternative modeling framework for BO which makes use of sequential Monte Carlo (SMC) to perform Bayesian inference with parametric models. We propose a BO algorithm to take advantage of SMC’s flexible posterior representations and provide methods to compensate for bias in the approximations and reduce particle degeneracy. Experimental results on simulated engineering applications in detecting water leaks and contaminant source localization are presented showing performance improvements over GP-based BO approaches.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Bayesian optimization</subject><subject>Contaminants</subject><subject>Decision making</subject><subject>Disease control</subject><subject>Gaussian process</subject><subject>inverse problems</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parametric statistics</subject><subject>Probabilistic models</subject><subject>sequential Monte Carlo</subject><subject>Statistical inference</subject><issn>2632-6736</issn><issn>2632-6736</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVKUXvsASN6SUtR07yREqHpWKOABna-M44CqJg-0Wla8npQhx2tVoNDuzkyTnFOYUaH5VazNnwNhcHCUTJjlLZc7l8b_9NJmFsAYAlpdcMDFJnm9wZ4LFnrgh2s5-YbSuJ582vhPbN853I7A1ZECPnYneatK52rSBbC2SYD42po8WW_Lo-mjIAn3rzpKTBttgZr9zmrze3b4sHtLV0_1ycb1KNWcQ06aAGihFU5RU5xVlumFQVZTmWuaQa9YYKnkm6lKWhWR5jQyZ4VXDCwmi0nyaLA-6tcO1Grzt0O-UQ6t-AOffFPpodWsUFCClprqgus6ErquyyhrIoDIoACUbtS4OWoN3Y6YQ1dptfD_aV-P3RjtCFnJkXR5Y2rsQvGn-rlJQ-w7U2IHad6AE_wbsBXl1</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Oliveira, Rafael</creator><creator>Scalzo, Richard</creator><creator>Kohn, Robert</creator><creator>Cripps, Sally</creator><creator>Hardman, Kyle</creator><creator>Close, John</creator><creator>Taghavi, Nasrin</creator><creator>Lemckert, Charles</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3586-5026</orcidid></search><sort><creationdate>20220101</creationdate><title>Bayesian optimization with informative parametric models via sequential Monte Carlo</title><author>Oliveira, Rafael ; Scalzo, Richard ; Kohn, Robert ; Cripps, Sally ; Hardman, Kyle ; Close, John ; Taghavi, Nasrin ; Lemckert, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-f80d011ae891c7b12cf20bb117c6707c2fe16345d9698627da2a2e3bf38605bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Bayesian optimization</topic><topic>Contaminants</topic><topic>Decision making</topic><topic>Disease control</topic><topic>Gaussian process</topic><topic>inverse problems</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parametric statistics</topic><topic>Probabilistic models</topic><topic>sequential Monte Carlo</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliveira, Rafael</creatorcontrib><creatorcontrib>Scalzo, Richard</creatorcontrib><creatorcontrib>Kohn, Robert</creatorcontrib><creatorcontrib>Cripps, Sally</creatorcontrib><creatorcontrib>Hardman, Kyle</creatorcontrib><creatorcontrib>Close, John</creatorcontrib><creatorcontrib>Taghavi, Nasrin</creatorcontrib><creatorcontrib>Lemckert, Charles</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Data-Centric Engineering (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliveira, Rafael</au><au>Scalzo, Richard</au><au>Kohn, Robert</au><au>Cripps, Sally</au><au>Hardman, Kyle</au><au>Close, John</au><au>Taghavi, Nasrin</au><au>Lemckert, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian optimization with informative parametric models via sequential Monte Carlo</atitle><jtitle>Data-Centric Engineering (Online)</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>3</volume><artnum>e5</artnum><issn>2632-6736</issn><eissn>2632-6736</eissn><abstract>Bayesian optimization (BO) has been a successful approach to optimize expensive functions whose prior knowledge can be specified by means of a probabilistic model. Due to their expressiveness and tractable closed-form predictive distributions, Gaussian process (GP) surrogate models have been the default go-to choice when deriving BO frameworks. However, as nonparametric models, GPs offer very little in terms of interpretability and informative power when applied to model complex physical phenomena in scientific applications. In addition, the Gaussian assumption also limits the applicability of GPs to problems where the variables of interest may highly deviate from Gaussianity. In this article, we investigate an alternative modeling framework for BO which makes use of sequential Monte Carlo (SMC) to perform Bayesian inference with parametric models. We propose a BO algorithm to take advantage of SMC’s flexible posterior representations and provide methods to compensate for bias in the approximations and reduce particle degeneracy. Experimental results on simulated engineering applications in detecting water leaks and contaminant source localization are presented showing performance improvements over GP-based BO approaches.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/dce.2022.5</doi><orcidid>https://orcid.org/0000-0002-3586-5026</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-6736
ispartof Data-Centric Engineering (Online), 2022-01, Vol.3, Article e5
issn 2632-6736
2632-6736
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_08066c1c81cd45cdb9b4f040bea50a62
source Publicly Available Content (ProQuest); Cambridge University Press
subjects Algorithms
Approximation
Bayesian analysis
Bayesian inference
Bayesian optimization
Contaminants
Decision making
Disease control
Gaussian process
inverse problems
Neural networks
Optimization
Parametric statistics
Probabilistic models
sequential Monte Carlo
Statistical inference
title Bayesian optimization with informative parametric models via sequential Monte Carlo
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20optimization%20with%20informative%20parametric%20models%20via%20sequential%20Monte%20Carlo&rft.jtitle=Data-Centric%20Engineering%20(Online)&rft.au=Oliveira,%20Rafael&rft.date=2022-01-01&rft.volume=3&rft.artnum=e5&rft.issn=2632-6736&rft.eissn=2632-6736&rft_id=info:doi/10.1017/dce.2022.5&rft_dat=%3Cproquest_doaj_%3E2637075686%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-f80d011ae891c7b12cf20bb117c6707c2fe16345d9698627da2a2e3bf38605bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637075686&rft_id=info:pmid/&rfr_iscdi=true