Loading…

Tongue feature dataset construction and real-time detection

Tongue diagnosis in traditional Chinese medicine (TCM) provides clinically important, objective evidence from direct observation of specific features that assist with diagnosis. However, the current interpretation of tongue features requires a significant amount of manpower and time. TCM physicians...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2024-03, Vol.19 (3), p.e0296070-e0296070
Main Authors: Chang, Wen-Hsien, Chen, Chih-Chieh, Wu, Han-Kuei, Hsu, Po-Chi, Lo, Lun-Chien, Chu, Hsueh-Ting, Chang, Hen-Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tongue diagnosis in traditional Chinese medicine (TCM) provides clinically important, objective evidence from direct observation of specific features that assist with diagnosis. However, the current interpretation of tongue features requires a significant amount of manpower and time. TCM physicians may have different interpretations of features displayed by the same tongue. An automated interpretation system that interprets tongue features would expedite the interpretation process and yield more consistent results. This study applied deep learning visualization to tongue diagnosis. After collecting tongue images and corresponding interpretation reports by TCM physicians in a single teaching hospital, various tongue features such as fissures, tooth marks, and different types of coatings were annotated manually with rectangles. These annotated data and images were used to train a deep learning object detection model. Upon completion of training, the position of each tongue feature was dynamically marked. A large high-quality manually annotated tongue feature dataset was constructed and analyzed. A detection model was trained with average precision (AP) 47.67%, 58.94%, 71.25% and 59.78% for fissures, tooth marks, thick and yellow coatings, respectively. At over 40 frames per second on a NVIDIA GeForce GTX 1060, the model was capable of detecting tongue features from any viewpoint in real time. This study constructed a tongue feature dataset and trained a deep learning object detection model to locate tongue features in real time. The model provided interpretability and intuitiveness that are often lacking in general neural network models and implies good feasibility for clinical application.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0296070