Loading…

Interaction Control for Human-Exoskeletons

In this work, a general concept of the human-exoskeleton compatibility and interaction control is addressed. Rehabilitation, as applied to humans with motor control disorder, involves repetitive gait training in relation to lower limb extremity and repetitive task training in relation to upper limb...

Full description

Saved in:
Bibliographic Details
Published in:Journal of control science and engineering 2020, Vol.2020 (2020), p.1-15
Main Authors: Ajayi, Michael Oluwatosin, Hamam, Y., Djouani, Karim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, a general concept of the human-exoskeleton compatibility and interaction control is addressed. Rehabilitation, as applied to humans with motor control disorder, involves repetitive gait training in relation to lower limb extremity and repetitive task training in relation to upper limb extremity. It is in this regard that exoskeletal systems must be kinematically compatible with those of the subject in order to guarantee that the subject is being trained properly. The incompatibility between the wearable robotic device and the wearer results in joint misalignment, thus introducing interaction forces during movement. This, therefore, leads to the introduction of the need for interaction control in wearable robotic devices. Human-exoskeleton joint alignment is an uphill task; hence, measures to actualize this in order to guarantee the safety and comfort of humans are necessary. These measures depend on the types of joints involved in the rehabilitation or assistive process. Hence, several upper and lower extremity exoskeletons with concepts relating to interaction forces reduction are reviewed. The significant distinction in the modelling strategy of lower and upper limb exoskeletons is highlighted. Limitations of certain exoskeletal systems which may not allow the application of interaction control are also discussed.
ISSN:1687-5249
1687-5257
DOI:10.1155/2020/8472510