Loading…

Comparative analysis of methodologies for detecting extrachromosomal circular DNA

Extrachromosomal circular DNA (eccDNA) is crucial in oncogene amplification, gene transcription regulation, and intratumor heterogeneity. While various analysis pipelines and experimental methods have been developed for eccDNA identification, their detection efficiencies have not been systematically...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-10, Vol.15 (1), p.9208-14, Article 9208
Main Authors: Gao, Xuyuan, Liu, Ke, Luo, Songwen, Tang, Meifang, Liu, Nianping, Jiang, Chen, Fang, Jingwen, Li, Shouzhen, Hou, Yanbing, Guo, Chuang, Qu, Kun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c366t-9de35e299a2f0e229615d08197883aa792dec88db9d7795ee9c4fffa89f90f483
container_end_page 14
container_issue 1
container_start_page 9208
container_title Nature communications
container_volume 15
creator Gao, Xuyuan
Liu, Ke
Luo, Songwen
Tang, Meifang
Liu, Nianping
Jiang, Chen
Fang, Jingwen
Li, Shouzhen
Hou, Yanbing
Guo, Chuang
Qu, Kun
description Extrachromosomal circular DNA (eccDNA) is crucial in oncogene amplification, gene transcription regulation, and intratumor heterogeneity. While various analysis pipelines and experimental methods have been developed for eccDNA identification, their detection efficiencies have not been systematically assessed. To address this, we evaluate the performance of 7 analysis pipelines using seven simulated datasets, in terms of accuracy, identity, duplication rate, and computational resource consumption. We also compare the eccDNA detection efficiency of 7 experimental methods through twenty-one real sequencing datasets. Here, we show that Circle-Map and Circle_finder (bwa-mem-samblaster) outperform the other short-read pipelines. However, Circle_finder (bwa-mem-samblaster) exhibits notable redundancy in its outcomes. CReSIL is the most effective pipeline for eccDNA detection in long-read sequencing data at depths higher than 10X. Moreover, long-read sequencing-based Circle-Seq shows superior efficiency in detecting copy number-amplified eccDNA over 10 kb in length. These results offer valuable insights for researchers in choosing the suitable methods for eccDNA research. Sequencing-based studies have advanced our understanding of the diverse functions of extrachromosomal circular DNA (eccDNA). Here the authors systematically compare the performance of several bioinformatic pipelines and experimental methods that have been developed for eccDNA detection.
doi_str_mv 10.1038/s41467-024-53496-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0822e5398d4e4c589cf902af4723cc91</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0822e5398d4e4c589cf902af4723cc91</doaj_id><sourcerecordid>3120593914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-9de35e299a2f0e229615d08197883aa792dec88db9d7795ee9c4fffa89f90f483</originalsourceid><addsrcrecordid>eNp9kUtv1TAQRiMEolXpH2CBIrFhE_Az8Syry6tSBUKCtTW1x7e-Sq4vdoLov8dt-kAs8MaWfXzGnq9pXnL2ljNp3hXFVT90TKhOSwV9Z540x4Ip3vFByKd_rY-a01J2rA4J3Cj1vDmSoJTRoI-bb5s0HTDjHH9Ri3scr0ssbQrtRPNV8mlM20ilDSm3nmZyc9xvW_o9Z3RXOU2ppAnH1sXslhFz-_7L2YvmWcCx0OndfNL8-Pjh--Zzd_H10_nm7KJzsu_nDjxJTQIARWAkBPRce2Y4DMZIxAGEJ2eMvwQ_DKCJwKkQAhoIwIIy8qQ5X70-4c4ecpwwX9uE0d5upLy1mOfoRrLMCEFagvGKlNMGXHUIDKp2xzng1fVmdR1y-rlQme0Ui6NxxD2lpVjJBdNQ26cq-vofdJeWXBu3UoKZXrFKiZVyOZWSKTw8kDN7k59d87M1P3ubn7350as79XI5kX-4cp9WBeQKlHq031J-rP0f7R_9YKTE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120208640</pqid></control><display><type>article</type><title>Comparative analysis of methodologies for detecting extrachromosomal circular DNA</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Gao, Xuyuan ; Liu, Ke ; Luo, Songwen ; Tang, Meifang ; Liu, Nianping ; Jiang, Chen ; Fang, Jingwen ; Li, Shouzhen ; Hou, Yanbing ; Guo, Chuang ; Qu, Kun</creator><creatorcontrib>Gao, Xuyuan ; Liu, Ke ; Luo, Songwen ; Tang, Meifang ; Liu, Nianping ; Jiang, Chen ; Fang, Jingwen ; Li, Shouzhen ; Hou, Yanbing ; Guo, Chuang ; Qu, Kun</creatorcontrib><description>Extrachromosomal circular DNA (eccDNA) is crucial in oncogene amplification, gene transcription regulation, and intratumor heterogeneity. While various analysis pipelines and experimental methods have been developed for eccDNA identification, their detection efficiencies have not been systematically assessed. To address this, we evaluate the performance of 7 analysis pipelines using seven simulated datasets, in terms of accuracy, identity, duplication rate, and computational resource consumption. We also compare the eccDNA detection efficiency of 7 experimental methods through twenty-one real sequencing datasets. Here, we show that Circle-Map and Circle_finder (bwa-mem-samblaster) outperform the other short-read pipelines. However, Circle_finder (bwa-mem-samblaster) exhibits notable redundancy in its outcomes. CReSIL is the most effective pipeline for eccDNA detection in long-read sequencing data at depths higher than 10X. Moreover, long-read sequencing-based Circle-Seq shows superior efficiency in detecting copy number-amplified eccDNA over 10 kb in length. These results offer valuable insights for researchers in choosing the suitable methods for eccDNA research. Sequencing-based studies have advanced our understanding of the diverse functions of extrachromosomal circular DNA (eccDNA). Here the authors systematically compare the performance of several bioinformatic pipelines and experimental methods that have been developed for eccDNA detection.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-53496-8</identifier><identifier>PMID: 39448595</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/23 ; 631/61/212 ; 631/67/69 ; Circular DNA ; Comparative analysis ; Computational Biology - methods ; Copy number ; Datasets ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; DNA, Circular - genetics ; Experimental methods ; Gene regulation ; Gene sequencing ; Heterogeneity ; High-Throughput Nucleotide Sequencing - methods ; Humanities and Social Sciences ; Humans ; multidisciplinary ; Performance evaluation ; Pipelines ; Redundancy ; Research methodology ; Resource consumption ; Science ; Science (multidisciplinary) ; Sequence Analysis, DNA - methods</subject><ispartof>Nature communications, 2024-10, Vol.15 (1), p.9208-14, Article 9208</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c366t-9de35e299a2f0e229615d08197883aa792dec88db9d7795ee9c4fffa89f90f483</cites><orcidid>0000-0002-5555-8437 ; 0009-0007-8570-5673 ; 0000-0002-3912-0793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120208640/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120208640?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39448595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Xuyuan</creatorcontrib><creatorcontrib>Liu, Ke</creatorcontrib><creatorcontrib>Luo, Songwen</creatorcontrib><creatorcontrib>Tang, Meifang</creatorcontrib><creatorcontrib>Liu, Nianping</creatorcontrib><creatorcontrib>Jiang, Chen</creatorcontrib><creatorcontrib>Fang, Jingwen</creatorcontrib><creatorcontrib>Li, Shouzhen</creatorcontrib><creatorcontrib>Hou, Yanbing</creatorcontrib><creatorcontrib>Guo, Chuang</creatorcontrib><creatorcontrib>Qu, Kun</creatorcontrib><title>Comparative analysis of methodologies for detecting extrachromosomal circular DNA</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Extrachromosomal circular DNA (eccDNA) is crucial in oncogene amplification, gene transcription regulation, and intratumor heterogeneity. While various analysis pipelines and experimental methods have been developed for eccDNA identification, their detection efficiencies have not been systematically assessed. To address this, we evaluate the performance of 7 analysis pipelines using seven simulated datasets, in terms of accuracy, identity, duplication rate, and computational resource consumption. We also compare the eccDNA detection efficiency of 7 experimental methods through twenty-one real sequencing datasets. Here, we show that Circle-Map and Circle_finder (bwa-mem-samblaster) outperform the other short-read pipelines. However, Circle_finder (bwa-mem-samblaster) exhibits notable redundancy in its outcomes. CReSIL is the most effective pipeline for eccDNA detection in long-read sequencing data at depths higher than 10X. Moreover, long-read sequencing-based Circle-Seq shows superior efficiency in detecting copy number-amplified eccDNA over 10 kb in length. These results offer valuable insights for researchers in choosing the suitable methods for eccDNA research. Sequencing-based studies have advanced our understanding of the diverse functions of extrachromosomal circular DNA (eccDNA). Here the authors systematically compare the performance of several bioinformatic pipelines and experimental methods that have been developed for eccDNA detection.</description><subject>38/23</subject><subject>631/61/212</subject><subject>631/67/69</subject><subject>Circular DNA</subject><subject>Comparative analysis</subject><subject>Computational Biology - methods</subject><subject>Copy number</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>DNA, Circular - genetics</subject><subject>Experimental methods</subject><subject>Gene regulation</subject><subject>Gene sequencing</subject><subject>Heterogeneity</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>multidisciplinary</subject><subject>Performance evaluation</subject><subject>Pipelines</subject><subject>Redundancy</subject><subject>Research methodology</subject><subject>Resource consumption</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sequence Analysis, DNA - methods</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtv1TAQRiMEolXpH2CBIrFhE_Az8Syry6tSBUKCtTW1x7e-Sq4vdoLov8dt-kAs8MaWfXzGnq9pXnL2ljNp3hXFVT90TKhOSwV9Z540x4Ip3vFByKd_rY-a01J2rA4J3Cj1vDmSoJTRoI-bb5s0HTDjHH9Ri3scr0ssbQrtRPNV8mlM20ilDSm3nmZyc9xvW_o9Z3RXOU2ppAnH1sXslhFz-_7L2YvmWcCx0OndfNL8-Pjh--Zzd_H10_nm7KJzsu_nDjxJTQIARWAkBPRce2Y4DMZIxAGEJ2eMvwQ_DKCJwKkQAhoIwIIy8qQ5X70-4c4ecpwwX9uE0d5upLy1mOfoRrLMCEFagvGKlNMGXHUIDKp2xzng1fVmdR1y-rlQme0Ui6NxxD2lpVjJBdNQ26cq-vofdJeWXBu3UoKZXrFKiZVyOZWSKTw8kDN7k59d87M1P3ubn7350as79XI5kX-4cp9WBeQKlHq031J-rP0f7R_9YKTE</recordid><startdate>20241025</startdate><enddate>20241025</enddate><creator>Gao, Xuyuan</creator><creator>Liu, Ke</creator><creator>Luo, Songwen</creator><creator>Tang, Meifang</creator><creator>Liu, Nianping</creator><creator>Jiang, Chen</creator><creator>Fang, Jingwen</creator><creator>Li, Shouzhen</creator><creator>Hou, Yanbing</creator><creator>Guo, Chuang</creator><creator>Qu, Kun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5555-8437</orcidid><orcidid>https://orcid.org/0009-0007-8570-5673</orcidid><orcidid>https://orcid.org/0000-0002-3912-0793</orcidid></search><sort><creationdate>20241025</creationdate><title>Comparative analysis of methodologies for detecting extrachromosomal circular DNA</title><author>Gao, Xuyuan ; Liu, Ke ; Luo, Songwen ; Tang, Meifang ; Liu, Nianping ; Jiang, Chen ; Fang, Jingwen ; Li, Shouzhen ; Hou, Yanbing ; Guo, Chuang ; Qu, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-9de35e299a2f0e229615d08197883aa792dec88db9d7795ee9c4fffa89f90f483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>38/23</topic><topic>631/61/212</topic><topic>631/67/69</topic><topic>Circular DNA</topic><topic>Comparative analysis</topic><topic>Computational Biology - methods</topic><topic>Copy number</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>DNA, Circular - genetics</topic><topic>Experimental methods</topic><topic>Gene regulation</topic><topic>Gene sequencing</topic><topic>Heterogeneity</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>multidisciplinary</topic><topic>Performance evaluation</topic><topic>Pipelines</topic><topic>Redundancy</topic><topic>Research methodology</topic><topic>Resource consumption</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sequence Analysis, DNA - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Xuyuan</creatorcontrib><creatorcontrib>Liu, Ke</creatorcontrib><creatorcontrib>Luo, Songwen</creatorcontrib><creatorcontrib>Tang, Meifang</creatorcontrib><creatorcontrib>Liu, Nianping</creatorcontrib><creatorcontrib>Jiang, Chen</creatorcontrib><creatorcontrib>Fang, Jingwen</creatorcontrib><creatorcontrib>Li, Shouzhen</creatorcontrib><creatorcontrib>Hou, Yanbing</creatorcontrib><creatorcontrib>Guo, Chuang</creatorcontrib><creatorcontrib>Qu, Kun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Xuyuan</au><au>Liu, Ke</au><au>Luo, Songwen</au><au>Tang, Meifang</au><au>Liu, Nianping</au><au>Jiang, Chen</au><au>Fang, Jingwen</au><au>Li, Shouzhen</au><au>Hou, Yanbing</au><au>Guo, Chuang</au><au>Qu, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative analysis of methodologies for detecting extrachromosomal circular DNA</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-10-25</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>9208</spage><epage>14</epage><pages>9208-14</pages><artnum>9208</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Extrachromosomal circular DNA (eccDNA) is crucial in oncogene amplification, gene transcription regulation, and intratumor heterogeneity. While various analysis pipelines and experimental methods have been developed for eccDNA identification, their detection efficiencies have not been systematically assessed. To address this, we evaluate the performance of 7 analysis pipelines using seven simulated datasets, in terms of accuracy, identity, duplication rate, and computational resource consumption. We also compare the eccDNA detection efficiency of 7 experimental methods through twenty-one real sequencing datasets. Here, we show that Circle-Map and Circle_finder (bwa-mem-samblaster) outperform the other short-read pipelines. However, Circle_finder (bwa-mem-samblaster) exhibits notable redundancy in its outcomes. CReSIL is the most effective pipeline for eccDNA detection in long-read sequencing data at depths higher than 10X. Moreover, long-read sequencing-based Circle-Seq shows superior efficiency in detecting copy number-amplified eccDNA over 10 kb in length. These results offer valuable insights for researchers in choosing the suitable methods for eccDNA research. Sequencing-based studies have advanced our understanding of the diverse functions of extrachromosomal circular DNA (eccDNA). Here the authors systematically compare the performance of several bioinformatic pipelines and experimental methods that have been developed for eccDNA detection.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39448595</pmid><doi>10.1038/s41467-024-53496-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5555-8437</orcidid><orcidid>https://orcid.org/0009-0007-8570-5673</orcidid><orcidid>https://orcid.org/0000-0002-3912-0793</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-10, Vol.15 (1), p.9208-14, Article 9208
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0822e5398d4e4c589cf902af4723cc91
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free; Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 38/23
631/61/212
631/67/69
Circular DNA
Comparative analysis
Computational Biology - methods
Copy number
Datasets
Deoxyribonucleic acid
DNA
DNA sequencing
DNA, Circular - genetics
Experimental methods
Gene regulation
Gene sequencing
Heterogeneity
High-Throughput Nucleotide Sequencing - methods
Humanities and Social Sciences
Humans
multidisciplinary
Performance evaluation
Pipelines
Redundancy
Research methodology
Resource consumption
Science
Science (multidisciplinary)
Sequence Analysis, DNA - methods
title Comparative analysis of methodologies for detecting extrachromosomal circular DNA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20analysis%20of%20methodologies%20for%20detecting%20extrachromosomal%20circular%20DNA&rft.jtitle=Nature%20communications&rft.au=Gao,%20Xuyuan&rft.date=2024-10-25&rft.volume=15&rft.issue=1&rft.spage=9208&rft.epage=14&rft.pages=9208-14&rft.artnum=9208&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-53496-8&rft_dat=%3Cproquest_doaj_%3E3120593914%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-9de35e299a2f0e229615d08197883aa792dec88db9d7795ee9c4fffa89f90f483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120208640&rft_id=info:pmid/39448595&rfr_iscdi=true