Loading…
Comparative analysis of methodologies for detecting extrachromosomal circular DNA
Extrachromosomal circular DNA (eccDNA) is crucial in oncogene amplification, gene transcription regulation, and intratumor heterogeneity. While various analysis pipelines and experimental methods have been developed for eccDNA identification, their detection efficiencies have not been systematically...
Saved in:
Published in: | Nature communications 2024-10, Vol.15 (1), p.9208-14, Article 9208 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c366t-9de35e299a2f0e229615d08197883aa792dec88db9d7795ee9c4fffa89f90f483 |
container_end_page | 14 |
container_issue | 1 |
container_start_page | 9208 |
container_title | Nature communications |
container_volume | 15 |
creator | Gao, Xuyuan Liu, Ke Luo, Songwen Tang, Meifang Liu, Nianping Jiang, Chen Fang, Jingwen Li, Shouzhen Hou, Yanbing Guo, Chuang Qu, Kun |
description | Extrachromosomal circular DNA (eccDNA) is crucial in oncogene amplification, gene transcription regulation, and intratumor heterogeneity. While various analysis pipelines and experimental methods have been developed for eccDNA identification, their detection efficiencies have not been systematically assessed. To address this, we evaluate the performance of 7 analysis pipelines using seven simulated datasets, in terms of accuracy, identity, duplication rate, and computational resource consumption. We also compare the eccDNA detection efficiency of 7 experimental methods through twenty-one real sequencing datasets. Here, we show that Circle-Map and Circle_finder (bwa-mem-samblaster) outperform the other short-read pipelines. However, Circle_finder (bwa-mem-samblaster) exhibits notable redundancy in its outcomes. CReSIL is the most effective pipeline for eccDNA detection in long-read sequencing data at depths higher than 10X. Moreover, long-read sequencing-based Circle-Seq shows superior efficiency in detecting copy number-amplified eccDNA over 10 kb in length. These results offer valuable insights for researchers in choosing the suitable methods for eccDNA research.
Sequencing-based studies have advanced our understanding of the diverse functions of extrachromosomal circular DNA (eccDNA). Here the authors systematically compare the performance of several bioinformatic pipelines and experimental methods that have been developed for eccDNA detection. |
doi_str_mv | 10.1038/s41467-024-53496-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0822e5398d4e4c589cf902af4723cc91</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0822e5398d4e4c589cf902af4723cc91</doaj_id><sourcerecordid>3120593914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-9de35e299a2f0e229615d08197883aa792dec88db9d7795ee9c4fffa89f90f483</originalsourceid><addsrcrecordid>eNp9kUtv1TAQRiMEolXpH2CBIrFhE_Az8Syry6tSBUKCtTW1x7e-Sq4vdoLov8dt-kAs8MaWfXzGnq9pXnL2ljNp3hXFVT90TKhOSwV9Z540x4Ip3vFByKd_rY-a01J2rA4J3Cj1vDmSoJTRoI-bb5s0HTDjHH9Ri3scr0ssbQrtRPNV8mlM20ilDSm3nmZyc9xvW_o9Z3RXOU2ppAnH1sXslhFz-_7L2YvmWcCx0OndfNL8-Pjh--Zzd_H10_nm7KJzsu_nDjxJTQIARWAkBPRce2Y4DMZIxAGEJ2eMvwQ_DKCJwKkQAhoIwIIy8qQ5X70-4c4ecpwwX9uE0d5upLy1mOfoRrLMCEFagvGKlNMGXHUIDKp2xzng1fVmdR1y-rlQme0Ui6NxxD2lpVjJBdNQ26cq-vofdJeWXBu3UoKZXrFKiZVyOZWSKTw8kDN7k59d87M1P3ubn7350as79XI5kX-4cp9WBeQKlHq031J-rP0f7R_9YKTE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120208640</pqid></control><display><type>article</type><title>Comparative analysis of methodologies for detecting extrachromosomal circular DNA</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Gao, Xuyuan ; Liu, Ke ; Luo, Songwen ; Tang, Meifang ; Liu, Nianping ; Jiang, Chen ; Fang, Jingwen ; Li, Shouzhen ; Hou, Yanbing ; Guo, Chuang ; Qu, Kun</creator><creatorcontrib>Gao, Xuyuan ; Liu, Ke ; Luo, Songwen ; Tang, Meifang ; Liu, Nianping ; Jiang, Chen ; Fang, Jingwen ; Li, Shouzhen ; Hou, Yanbing ; Guo, Chuang ; Qu, Kun</creatorcontrib><description>Extrachromosomal circular DNA (eccDNA) is crucial in oncogene amplification, gene transcription regulation, and intratumor heterogeneity. While various analysis pipelines and experimental methods have been developed for eccDNA identification, their detection efficiencies have not been systematically assessed. To address this, we evaluate the performance of 7 analysis pipelines using seven simulated datasets, in terms of accuracy, identity, duplication rate, and computational resource consumption. We also compare the eccDNA detection efficiency of 7 experimental methods through twenty-one real sequencing datasets. Here, we show that Circle-Map and Circle_finder (bwa-mem-samblaster) outperform the other short-read pipelines. However, Circle_finder (bwa-mem-samblaster) exhibits notable redundancy in its outcomes. CReSIL is the most effective pipeline for eccDNA detection in long-read sequencing data at depths higher than 10X. Moreover, long-read sequencing-based Circle-Seq shows superior efficiency in detecting copy number-amplified eccDNA over 10 kb in length. These results offer valuable insights for researchers in choosing the suitable methods for eccDNA research.
Sequencing-based studies have advanced our understanding of the diverse functions of extrachromosomal circular DNA (eccDNA). Here the authors systematically compare the performance of several bioinformatic pipelines and experimental methods that have been developed for eccDNA detection.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-53496-8</identifier><identifier>PMID: 39448595</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/23 ; 631/61/212 ; 631/67/69 ; Circular DNA ; Comparative analysis ; Computational Biology - methods ; Copy number ; Datasets ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; DNA, Circular - genetics ; Experimental methods ; Gene regulation ; Gene sequencing ; Heterogeneity ; High-Throughput Nucleotide Sequencing - methods ; Humanities and Social Sciences ; Humans ; multidisciplinary ; Performance evaluation ; Pipelines ; Redundancy ; Research methodology ; Resource consumption ; Science ; Science (multidisciplinary) ; Sequence Analysis, DNA - methods</subject><ispartof>Nature communications, 2024-10, Vol.15 (1), p.9208-14, Article 9208</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c366t-9de35e299a2f0e229615d08197883aa792dec88db9d7795ee9c4fffa89f90f483</cites><orcidid>0000-0002-5555-8437 ; 0009-0007-8570-5673 ; 0000-0002-3912-0793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120208640/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120208640?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39448595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Xuyuan</creatorcontrib><creatorcontrib>Liu, Ke</creatorcontrib><creatorcontrib>Luo, Songwen</creatorcontrib><creatorcontrib>Tang, Meifang</creatorcontrib><creatorcontrib>Liu, Nianping</creatorcontrib><creatorcontrib>Jiang, Chen</creatorcontrib><creatorcontrib>Fang, Jingwen</creatorcontrib><creatorcontrib>Li, Shouzhen</creatorcontrib><creatorcontrib>Hou, Yanbing</creatorcontrib><creatorcontrib>Guo, Chuang</creatorcontrib><creatorcontrib>Qu, Kun</creatorcontrib><title>Comparative analysis of methodologies for detecting extrachromosomal circular DNA</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Extrachromosomal circular DNA (eccDNA) is crucial in oncogene amplification, gene transcription regulation, and intratumor heterogeneity. While various analysis pipelines and experimental methods have been developed for eccDNA identification, their detection efficiencies have not been systematically assessed. To address this, we evaluate the performance of 7 analysis pipelines using seven simulated datasets, in terms of accuracy, identity, duplication rate, and computational resource consumption. We also compare the eccDNA detection efficiency of 7 experimental methods through twenty-one real sequencing datasets. Here, we show that Circle-Map and Circle_finder (bwa-mem-samblaster) outperform the other short-read pipelines. However, Circle_finder (bwa-mem-samblaster) exhibits notable redundancy in its outcomes. CReSIL is the most effective pipeline for eccDNA detection in long-read sequencing data at depths higher than 10X. Moreover, long-read sequencing-based Circle-Seq shows superior efficiency in detecting copy number-amplified eccDNA over 10 kb in length. These results offer valuable insights for researchers in choosing the suitable methods for eccDNA research.
Sequencing-based studies have advanced our understanding of the diverse functions of extrachromosomal circular DNA (eccDNA). Here the authors systematically compare the performance of several bioinformatic pipelines and experimental methods that have been developed for eccDNA detection.</description><subject>38/23</subject><subject>631/61/212</subject><subject>631/67/69</subject><subject>Circular DNA</subject><subject>Comparative analysis</subject><subject>Computational Biology - methods</subject><subject>Copy number</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>DNA, Circular - genetics</subject><subject>Experimental methods</subject><subject>Gene regulation</subject><subject>Gene sequencing</subject><subject>Heterogeneity</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>multidisciplinary</subject><subject>Performance evaluation</subject><subject>Pipelines</subject><subject>Redundancy</subject><subject>Research methodology</subject><subject>Resource consumption</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sequence Analysis, DNA - methods</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtv1TAQRiMEolXpH2CBIrFhE_Az8Syry6tSBUKCtTW1x7e-Sq4vdoLov8dt-kAs8MaWfXzGnq9pXnL2ljNp3hXFVT90TKhOSwV9Z540x4Ip3vFByKd_rY-a01J2rA4J3Cj1vDmSoJTRoI-bb5s0HTDjHH9Ri3scr0ssbQrtRPNV8mlM20ilDSm3nmZyc9xvW_o9Z3RXOU2ppAnH1sXslhFz-_7L2YvmWcCx0OndfNL8-Pjh--Zzd_H10_nm7KJzsu_nDjxJTQIARWAkBPRce2Y4DMZIxAGEJ2eMvwQ_DKCJwKkQAhoIwIIy8qQ5X70-4c4ecpwwX9uE0d5upLy1mOfoRrLMCEFagvGKlNMGXHUIDKp2xzng1fVmdR1y-rlQme0Ui6NxxD2lpVjJBdNQ26cq-vofdJeWXBu3UoKZXrFKiZVyOZWSKTw8kDN7k59d87M1P3ubn7350as79XI5kX-4cp9WBeQKlHq031J-rP0f7R_9YKTE</recordid><startdate>20241025</startdate><enddate>20241025</enddate><creator>Gao, Xuyuan</creator><creator>Liu, Ke</creator><creator>Luo, Songwen</creator><creator>Tang, Meifang</creator><creator>Liu, Nianping</creator><creator>Jiang, Chen</creator><creator>Fang, Jingwen</creator><creator>Li, Shouzhen</creator><creator>Hou, Yanbing</creator><creator>Guo, Chuang</creator><creator>Qu, Kun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5555-8437</orcidid><orcidid>https://orcid.org/0009-0007-8570-5673</orcidid><orcidid>https://orcid.org/0000-0002-3912-0793</orcidid></search><sort><creationdate>20241025</creationdate><title>Comparative analysis of methodologies for detecting extrachromosomal circular DNA</title><author>Gao, Xuyuan ; Liu, Ke ; Luo, Songwen ; Tang, Meifang ; Liu, Nianping ; Jiang, Chen ; Fang, Jingwen ; Li, Shouzhen ; Hou, Yanbing ; Guo, Chuang ; Qu, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-9de35e299a2f0e229615d08197883aa792dec88db9d7795ee9c4fffa89f90f483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>38/23</topic><topic>631/61/212</topic><topic>631/67/69</topic><topic>Circular DNA</topic><topic>Comparative analysis</topic><topic>Computational Biology - methods</topic><topic>Copy number</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>DNA, Circular - genetics</topic><topic>Experimental methods</topic><topic>Gene regulation</topic><topic>Gene sequencing</topic><topic>Heterogeneity</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>multidisciplinary</topic><topic>Performance evaluation</topic><topic>Pipelines</topic><topic>Redundancy</topic><topic>Research methodology</topic><topic>Resource consumption</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sequence Analysis, DNA - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Xuyuan</creatorcontrib><creatorcontrib>Liu, Ke</creatorcontrib><creatorcontrib>Luo, Songwen</creatorcontrib><creatorcontrib>Tang, Meifang</creatorcontrib><creatorcontrib>Liu, Nianping</creatorcontrib><creatorcontrib>Jiang, Chen</creatorcontrib><creatorcontrib>Fang, Jingwen</creatorcontrib><creatorcontrib>Li, Shouzhen</creatorcontrib><creatorcontrib>Hou, Yanbing</creatorcontrib><creatorcontrib>Guo, Chuang</creatorcontrib><creatorcontrib>Qu, Kun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Xuyuan</au><au>Liu, Ke</au><au>Luo, Songwen</au><au>Tang, Meifang</au><au>Liu, Nianping</au><au>Jiang, Chen</au><au>Fang, Jingwen</au><au>Li, Shouzhen</au><au>Hou, Yanbing</au><au>Guo, Chuang</au><au>Qu, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative analysis of methodologies for detecting extrachromosomal circular DNA</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-10-25</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>9208</spage><epage>14</epage><pages>9208-14</pages><artnum>9208</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Extrachromosomal circular DNA (eccDNA) is crucial in oncogene amplification, gene transcription regulation, and intratumor heterogeneity. While various analysis pipelines and experimental methods have been developed for eccDNA identification, their detection efficiencies have not been systematically assessed. To address this, we evaluate the performance of 7 analysis pipelines using seven simulated datasets, in terms of accuracy, identity, duplication rate, and computational resource consumption. We also compare the eccDNA detection efficiency of 7 experimental methods through twenty-one real sequencing datasets. Here, we show that Circle-Map and Circle_finder (bwa-mem-samblaster) outperform the other short-read pipelines. However, Circle_finder (bwa-mem-samblaster) exhibits notable redundancy in its outcomes. CReSIL is the most effective pipeline for eccDNA detection in long-read sequencing data at depths higher than 10X. Moreover, long-read sequencing-based Circle-Seq shows superior efficiency in detecting copy number-amplified eccDNA over 10 kb in length. These results offer valuable insights for researchers in choosing the suitable methods for eccDNA research.
Sequencing-based studies have advanced our understanding of the diverse functions of extrachromosomal circular DNA (eccDNA). Here the authors systematically compare the performance of several bioinformatic pipelines and experimental methods that have been developed for eccDNA detection.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39448595</pmid><doi>10.1038/s41467-024-53496-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5555-8437</orcidid><orcidid>https://orcid.org/0009-0007-8570-5673</orcidid><orcidid>https://orcid.org/0000-0002-3912-0793</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-10, Vol.15 (1), p.9208-14, Article 9208 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0822e5398d4e4c589cf902af4723cc91 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 38/23 631/61/212 631/67/69 Circular DNA Comparative analysis Computational Biology - methods Copy number Datasets Deoxyribonucleic acid DNA DNA sequencing DNA, Circular - genetics Experimental methods Gene regulation Gene sequencing Heterogeneity High-Throughput Nucleotide Sequencing - methods Humanities and Social Sciences Humans multidisciplinary Performance evaluation Pipelines Redundancy Research methodology Resource consumption Science Science (multidisciplinary) Sequence Analysis, DNA - methods |
title | Comparative analysis of methodologies for detecting extrachromosomal circular DNA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20analysis%20of%20methodologies%20for%20detecting%20extrachromosomal%20circular%20DNA&rft.jtitle=Nature%20communications&rft.au=Gao,%20Xuyuan&rft.date=2024-10-25&rft.volume=15&rft.issue=1&rft.spage=9208&rft.epage=14&rft.pages=9208-14&rft.artnum=9208&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-53496-8&rft_dat=%3Cproquest_doaj_%3E3120593914%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-9de35e299a2f0e229615d08197883aa792dec88db9d7795ee9c4fffa89f90f483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120208640&rft_id=info:pmid/39448595&rfr_iscdi=true |