Loading…
Crystal structure and photocatalytic activity of luminescent 3D-Supramolecular metal organic framework of dysprosium
A 3D supramolecular metal organic framework of dysprosium has been fabricated through a facile hydrothermal procedure with the ligand, 2,6-naphthalene disulphonic acid and the co-ligand, 4,4′-bipyridine. The MOF has been characterized as [C60H81DyN8O30S4] by routine analytical procedures. SXRD studi...
Saved in:
Published in: | Heliyon 2023-11, Vol.9 (11), p.e21262-e21262, Article e21262 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A 3D supramolecular metal organic framework of dysprosium has been fabricated through a facile hydrothermal procedure with the ligand, 2,6-naphthalene disulphonic acid and the co-ligand, 4,4′-bipyridine. The MOF has been characterized as [C60H81DyN8O30S4] by routine analytical procedures. SXRD studies of the MOF show the existence of a hydrogen-bonded 3D supramolecular structure with high porosity. It crystallizes in monoclinic space group P21/n with unit cell parameters, a = 16.5424(6) Å, b = 37.0052(14) Å, c = 24.4361(9) Å, β = 100.7410°, α = γ = 90°. The Dy-MOF has eight coordinated water molecules around the metal centre and exhibits square anti-prismatic geometry. The band gap is 3.11 eV. The degradation experiments under visible light confirmed that Dy-MOF can act as a photocatalyst. Addition of hydrogen peroxide remarkably increases the degradation efficiency of the MOF through an advanced oxidation process. The newly synthesized MOF produced sharp emission peaks characteristic of dysprosium ion. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2023.e21262 |