Loading…

Construction of a High-Performance Composite Solid Electrolyte Through In-Situ Polymerization within a Self-Supported Porous Garnet Framework

Highlights A scalable tape-casting method produces self-supported porous Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 . Combining the in-situ polymerization approach, a composite solid electrolyte with superior electrochemical properties is fabricated. Solid-state Li|CSE|LiNi 0.8 Co 0.1 Mn 0.1 O 2 cells show rema...

Full description

Saved in:
Bibliographic Details
Published in:Nano-micro letters 2024-12, Vol.16 (1), p.83-15, Article 83
Main Authors: Nguyen, An-Giang, Lee, Min-Ho, Kim, Jaekook, Park, Chan-Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c524t-34fe9596ff67ebb156ec7dc9eed8f7332cd9d2abccc8c0809c046cc21aaa32c43
cites cdi_FETCH-LOGICAL-c524t-34fe9596ff67ebb156ec7dc9eed8f7332cd9d2abccc8c0809c046cc21aaa32c43
container_end_page 15
container_issue 1
container_start_page 83
container_title Nano-micro letters
container_volume 16
creator Nguyen, An-Giang
Lee, Min-Ho
Kim, Jaekook
Park, Chan-Jin
description Highlights A scalable tape-casting method produces self-supported porous Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 . Combining the in-situ polymerization approach, a composite solid electrolyte with superior electrochemical properties is fabricated. Solid-state Li|CSE|LiNi 0.8 Co 0.1 Mn 0.1 O 2 cells show remarkable cyclability and rate capability. LiF-and B-rich interphase layers mitigate interfacial reactions, enhancing solid-state battery performance. Composite solid electrolytes (CSEs) have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries (SSLMBs). However, concurrently achieving exceptional ionic conductivity and interface compatibility between the electrolyte and electrode presents a significant challenge in the development of high-performance CSEs for SSLMBs. To overcome these challenges, we present a method involving the in-situ polymerization of a monomer within a self-supported porous Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZT) to produce the CSE. The synergy of the continuous conductive LLZT network, well-organized polymer, and their interface can enhance the ionic conductivity of the CSE at room temperature. Furthermore, the in-situ polymerization process can also construct the integration and compatibility of the solid electrolyte–solid electrode interface. The synthesized CSE exhibited a high ionic conductivity of 1.117 mS cm −1 , a significant lithium transference number of 0.627, and exhibited electrochemical stability up to 5.06 V vs. Li/Li +  at 30 °C. Moreover, the Li|CSE|LiNi 0.8 Co 0.1 Mn 0.1 O 2 cell delivered a discharge capacity of 105.1 mAh g −1 after 400 cycles at 0.5 C and 30 °C, corresponding to a capacity retention of 61%. This methodology could be extended to a variety of ceramic, polymer electrolytes, or battery systems, thereby offering a viable strategy to improve the electrochemical properties of CSEs for high-energy–density SSLMBs.
doi_str_mv 10.1007/s40820-023-01294-0
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0868a67397a443a085fc000080d778eb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0868a67397a443a085fc000080d778eb</doaj_id><sourcerecordid>2914251427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-34fe9596ff67ebb156ec7dc9eed8f7332cd9d2abccc8c0809c046cc21aaa32c43</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhk1paUKaP9BDMfTSi1p9WvKxLPlYCDSw6VnI8mhXqW1tJZmQ_If-52rXaQo9dEBIzDzzaoa3qt4T_JlgLL8kjhXFCFOGMKEtR_hVdUqJwEgIQV6XNyMENRI3J9V5Sr7DgnJJpeBvqxOmKOEKs9Pq1ypMKcfZZh-mOrja1Nd-u0O3EF2Io5ks1Ksw7kPyGepNGHxfXwxgcwzDY8nc7WKYt7t6PaGNz3N9W9IjRP9kjoIPPu_8VEQ3MDi0mff7EDP0BSttqb4ycYJcX0YzwkOIP95Vb5wZEpw_32fV98uLu9U1uvl2tV59vUG2LJER4w5a0TbONRK6jogGrOxtC9ArJxmjtm97ajprrbJY4dZi3lhLiTGmFDk7q9aLbh_Mvd5HP5r4qIPx-pgIcatNzN4OoLFqlGkka6XhnBmshLO4hMK9lAq6ovVp0drH8HOGlPXok4VhMBOUHTVtCaeiHFnQj_-g92GOU9n0QDEhSxyGowtlY0gpgnsZkGB98F4v3uvivT56r3Fp-vAsPXcj9C8tf5wuAFuAVErTFuLfv_8j-xus1bs3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913577774</pqid></control><display><type>article</type><title>Construction of a High-Performance Composite Solid Electrolyte Through In-Situ Polymerization within a Self-Supported Porous Garnet Framework</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Nguyen, An-Giang ; Lee, Min-Ho ; Kim, Jaekook ; Park, Chan-Jin</creator><creatorcontrib>Nguyen, An-Giang ; Lee, Min-Ho ; Kim, Jaekook ; Park, Chan-Jin</creatorcontrib><description>Highlights A scalable tape-casting method produces self-supported porous Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 . Combining the in-situ polymerization approach, a composite solid electrolyte with superior electrochemical properties is fabricated. Solid-state Li|CSE|LiNi 0.8 Co 0.1 Mn 0.1 O 2 cells show remarkable cyclability and rate capability. LiF-and B-rich interphase layers mitigate interfacial reactions, enhancing solid-state battery performance. Composite solid electrolytes (CSEs) have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries (SSLMBs). However, concurrently achieving exceptional ionic conductivity and interface compatibility between the electrolyte and electrode presents a significant challenge in the development of high-performance CSEs for SSLMBs. To overcome these challenges, we present a method involving the in-situ polymerization of a monomer within a self-supported porous Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZT) to produce the CSE. The synergy of the continuous conductive LLZT network, well-organized polymer, and their interface can enhance the ionic conductivity of the CSE at room temperature. Furthermore, the in-situ polymerization process can also construct the integration and compatibility of the solid electrolyte–solid electrode interface. The synthesized CSE exhibited a high ionic conductivity of 1.117 mS cm −1 , a significant lithium transference number of 0.627, and exhibited electrochemical stability up to 5.06 V vs. Li/Li +  at 30 °C. Moreover, the Li|CSE|LiNi 0.8 Co 0.1 Mn 0.1 O 2 cell delivered a discharge capacity of 105.1 mAh g −1 after 400 cycles at 0.5 C and 30 °C, corresponding to a capacity retention of 61%. This methodology could be extended to a variety of ceramic, polymer electrolytes, or battery systems, thereby offering a viable strategy to improve the electrochemical properties of CSEs for high-energy–density SSLMBs.</description><identifier>ISSN: 2311-6706</identifier><identifier>ISSN: 2150-5551</identifier><identifier>EISSN: 2150-5551</identifier><identifier>DOI: 10.1007/s40820-023-01294-0</identifier><identifier>PMID: 38214803</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Compatibility ; Composite solid electrolyte ; Density ; Electrochemical analysis ; Electrodes ; Electrolytes ; Electrolytic cells ; Engineering ; Interface reactions ; Ion currents ; LiF-and B-rich interphase layers ; Lithium batteries ; Molten salt electrolytes ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Polymerization ; Polymers ; Room temperature ; Scalable tape-casting method ; Self-supported porous Li6.4La3Zr1.4Ta0.6O12 ; Solid electrolytes ; Solid state ; Solid-state batteries ; Tape casting</subject><ispartof>Nano-micro letters, 2024-12, Vol.16 (1), p.83-15, Article 83</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-34fe9596ff67ebb156ec7dc9eed8f7332cd9d2abccc8c0809c046cc21aaa32c43</citedby><cites>FETCH-LOGICAL-c524t-34fe9596ff67ebb156ec7dc9eed8f7332cd9d2abccc8c0809c046cc21aaa32c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2913577774?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38214803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, An-Giang</creatorcontrib><creatorcontrib>Lee, Min-Ho</creatorcontrib><creatorcontrib>Kim, Jaekook</creatorcontrib><creatorcontrib>Park, Chan-Jin</creatorcontrib><title>Construction of a High-Performance Composite Solid Electrolyte Through In-Situ Polymerization within a Self-Supported Porous Garnet Framework</title><title>Nano-micro letters</title><addtitle>Nano-Micro Lett</addtitle><addtitle>Nanomicro Lett</addtitle><description>Highlights A scalable tape-casting method produces self-supported porous Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 . Combining the in-situ polymerization approach, a composite solid electrolyte with superior electrochemical properties is fabricated. Solid-state Li|CSE|LiNi 0.8 Co 0.1 Mn 0.1 O 2 cells show remarkable cyclability and rate capability. LiF-and B-rich interphase layers mitigate interfacial reactions, enhancing solid-state battery performance. Composite solid electrolytes (CSEs) have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries (SSLMBs). However, concurrently achieving exceptional ionic conductivity and interface compatibility between the electrolyte and electrode presents a significant challenge in the development of high-performance CSEs for SSLMBs. To overcome these challenges, we present a method involving the in-situ polymerization of a monomer within a self-supported porous Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZT) to produce the CSE. The synergy of the continuous conductive LLZT network, well-organized polymer, and their interface can enhance the ionic conductivity of the CSE at room temperature. Furthermore, the in-situ polymerization process can also construct the integration and compatibility of the solid electrolyte–solid electrode interface. The synthesized CSE exhibited a high ionic conductivity of 1.117 mS cm −1 , a significant lithium transference number of 0.627, and exhibited electrochemical stability up to 5.06 V vs. Li/Li +  at 30 °C. Moreover, the Li|CSE|LiNi 0.8 Co 0.1 Mn 0.1 O 2 cell delivered a discharge capacity of 105.1 mAh g −1 after 400 cycles at 0.5 C and 30 °C, corresponding to a capacity retention of 61%. This methodology could be extended to a variety of ceramic, polymer electrolytes, or battery systems, thereby offering a viable strategy to improve the electrochemical properties of CSEs for high-energy–density SSLMBs.</description><subject>Compatibility</subject><subject>Composite solid electrolyte</subject><subject>Density</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Engineering</subject><subject>Interface reactions</subject><subject>Ion currents</subject><subject>LiF-and B-rich interphase layers</subject><subject>Lithium batteries</subject><subject>Molten salt electrolytes</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Room temperature</subject><subject>Scalable tape-casting method</subject><subject>Self-supported porous Li6.4La3Zr1.4Ta0.6O12</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><subject>Solid-state batteries</subject><subject>Tape casting</subject><issn>2311-6706</issn><issn>2150-5551</issn><issn>2150-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1r3DAQhk1paUKaP9BDMfTSi1p9WvKxLPlYCDSw6VnI8mhXqW1tJZmQ_If-52rXaQo9dEBIzDzzaoa3qt4T_JlgLL8kjhXFCFOGMKEtR_hVdUqJwEgIQV6XNyMENRI3J9V5Sr7DgnJJpeBvqxOmKOEKs9Pq1ypMKcfZZh-mOrja1Nd-u0O3EF2Io5ks1Ksw7kPyGepNGHxfXwxgcwzDY8nc7WKYt7t6PaGNz3N9W9IjRP9kjoIPPu_8VEQ3MDi0mff7EDP0BSttqb4ycYJcX0YzwkOIP95Vb5wZEpw_32fV98uLu9U1uvl2tV59vUG2LJER4w5a0TbONRK6jogGrOxtC9ArJxmjtm97ajprrbJY4dZi3lhLiTGmFDk7q9aLbh_Mvd5HP5r4qIPx-pgIcatNzN4OoLFqlGkka6XhnBmshLO4hMK9lAq6ovVp0drH8HOGlPXok4VhMBOUHTVtCaeiHFnQj_-g92GOU9n0QDEhSxyGowtlY0gpgnsZkGB98F4v3uvivT56r3Fp-vAsPXcj9C8tf5wuAFuAVErTFuLfv_8j-xus1bs3</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Nguyen, An-Giang</creator><creator>Lee, Min-Ho</creator><creator>Kim, Jaekook</creator><creator>Park, Chan-Jin</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20241201</creationdate><title>Construction of a High-Performance Composite Solid Electrolyte Through In-Situ Polymerization within a Self-Supported Porous Garnet Framework</title><author>Nguyen, An-Giang ; Lee, Min-Ho ; Kim, Jaekook ; Park, Chan-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-34fe9596ff67ebb156ec7dc9eed8f7332cd9d2abccc8c0809c046cc21aaa32c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Compatibility</topic><topic>Composite solid electrolyte</topic><topic>Density</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Engineering</topic><topic>Interface reactions</topic><topic>Ion currents</topic><topic>LiF-and B-rich interphase layers</topic><topic>Lithium batteries</topic><topic>Molten salt electrolytes</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Room temperature</topic><topic>Scalable tape-casting method</topic><topic>Self-supported porous Li6.4La3Zr1.4Ta0.6O12</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><topic>Solid-state batteries</topic><topic>Tape casting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, An-Giang</creatorcontrib><creatorcontrib>Lee, Min-Ho</creatorcontrib><creatorcontrib>Kim, Jaekook</creatorcontrib><creatorcontrib>Park, Chan-Jin</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nano-micro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, An-Giang</au><au>Lee, Min-Ho</au><au>Kim, Jaekook</au><au>Park, Chan-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of a High-Performance Composite Solid Electrolyte Through In-Situ Polymerization within a Self-Supported Porous Garnet Framework</atitle><jtitle>Nano-micro letters</jtitle><stitle>Nano-Micro Lett</stitle><addtitle>Nanomicro Lett</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>83</spage><epage>15</epage><pages>83-15</pages><artnum>83</artnum><issn>2311-6706</issn><issn>2150-5551</issn><eissn>2150-5551</eissn><abstract>Highlights A scalable tape-casting method produces self-supported porous Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 . Combining the in-situ polymerization approach, a composite solid electrolyte with superior electrochemical properties is fabricated. Solid-state Li|CSE|LiNi 0.8 Co 0.1 Mn 0.1 O 2 cells show remarkable cyclability and rate capability. LiF-and B-rich interphase layers mitigate interfacial reactions, enhancing solid-state battery performance. Composite solid electrolytes (CSEs) have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries (SSLMBs). However, concurrently achieving exceptional ionic conductivity and interface compatibility between the electrolyte and electrode presents a significant challenge in the development of high-performance CSEs for SSLMBs. To overcome these challenges, we present a method involving the in-situ polymerization of a monomer within a self-supported porous Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZT) to produce the CSE. The synergy of the continuous conductive LLZT network, well-organized polymer, and their interface can enhance the ionic conductivity of the CSE at room temperature. Furthermore, the in-situ polymerization process can also construct the integration and compatibility of the solid electrolyte–solid electrode interface. The synthesized CSE exhibited a high ionic conductivity of 1.117 mS cm −1 , a significant lithium transference number of 0.627, and exhibited electrochemical stability up to 5.06 V vs. Li/Li +  at 30 °C. Moreover, the Li|CSE|LiNi 0.8 Co 0.1 Mn 0.1 O 2 cell delivered a discharge capacity of 105.1 mAh g −1 after 400 cycles at 0.5 C and 30 °C, corresponding to a capacity retention of 61%. This methodology could be extended to a variety of ceramic, polymer electrolytes, or battery systems, thereby offering a viable strategy to improve the electrochemical properties of CSEs for high-energy–density SSLMBs.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>38214803</pmid><doi>10.1007/s40820-023-01294-0</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2311-6706
ispartof Nano-micro letters, 2024-12, Vol.16 (1), p.83-15, Article 83
issn 2311-6706
2150-5551
2150-5551
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0868a67397a443a085fc000080d778eb
source NCBI_PubMed Central(免费); Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Compatibility
Composite solid electrolyte
Density
Electrochemical analysis
Electrodes
Electrolytes
Electrolytic cells
Engineering
Interface reactions
Ion currents
LiF-and B-rich interphase layers
Lithium batteries
Molten salt electrolytes
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Polymerization
Polymers
Room temperature
Scalable tape-casting method
Self-supported porous Li6.4La3Zr1.4Ta0.6O12
Solid electrolytes
Solid state
Solid-state batteries
Tape casting
title Construction of a High-Performance Composite Solid Electrolyte Through In-Situ Polymerization within a Self-Supported Porous Garnet Framework
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20a%20High-Performance%20Composite%20Solid%20Electrolyte%20Through%20In-Situ%20Polymerization%20within%20a%20Self-Supported%20Porous%20Garnet%20Framework&rft.jtitle=Nano-micro%20letters&rft.au=Nguyen,%20An-Giang&rft.date=2024-12-01&rft.volume=16&rft.issue=1&rft.spage=83&rft.epage=15&rft.pages=83-15&rft.artnum=83&rft.issn=2311-6706&rft.eissn=2150-5551&rft_id=info:doi/10.1007/s40820-023-01294-0&rft_dat=%3Cproquest_doaj_%3E2914251427%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-34fe9596ff67ebb156ec7dc9eed8f7332cd9d2abccc8c0809c046cc21aaa32c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2913577774&rft_id=info:pmid/38214803&rfr_iscdi=true