Loading…

A Diagnosing Method for Phased Antenna Array Element Excitation Amplitude and Phase Failures Using Random Binary Matrices

A diagnosing method for phased antenna array element failures is proposed. The element excitation amplitudes and phases are reconstructed by a compressed sensing based approach, in which the radiated electric fields of the array are sampled by a single fixed receiving antenna. The diagnosing can be...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.33060-33071
Main Authors: Xiong, Can, Xiao, Gaobiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A diagnosing method for phased antenna array element failures is proposed. The element excitation amplitudes and phases are reconstructed by a compressed sensing based approach, in which the radiated electric fields of the array are sampled by a single fixed receiving antenna. The diagnosing can be processed when the phased array is still in service. Particularly, it can be specialized for detecting faults only. Element excitation phases are designed to follow Bernoulli distribution, which is difficult to be realized in conventional geometric sampling methods. It is capable to provide effective and simultaneous detection for different types of failures with phase control means that are simpler comparing with other methods in which excitation phase adjustment is required. Especially, a two-step detection strategy is proposed to effectively detect phase failures due to faultily short-circuited phase shifters. Numerical results illustrate the effective sensing range of a single receiving antenna. Full-wave simulations validate the diagnosing performance in the presence of mutual couplings between array elements.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2974012