Loading…

Green route synthesis and characterization of β-Bi2O3/SiO2 and β-Bi2O3/Bi2O2.75/SiO2 using Juglans regia L. shell aqueous extract and photocatalytic properties for the degradation of RB-5

Background Photocatalyst oxides added with silicon improve their photocatalytic properties. In this research, nanostructured β-Bi 2 O 3 /SiO 2 and β-Bi 2 O 3 /Bi 2 O 2.75 /SiO 2 were obtained by means of a green method mediated by the using the aqueous extract of J. regia shell as the source of redu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of analytical science and technology 2022-12, Vol.13 (1), p.52-10, Article 52
Main Authors: Yañez-Cruz, Maria Guadalupe, Villanueva-Ibáñez, Maricela, Méndez-Arriaga, Fabiola, Lucho-Constantino, Carlos Alexander, Hernández-Pérez, María de los Ángeles, Ramírez-Vargas, María del Rocío, Flores-González, Marco Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Photocatalyst oxides added with silicon improve their photocatalytic properties. In this research, nanostructured β-Bi 2 O 3 /SiO 2 and β-Bi 2 O 3 /Bi 2 O 2.75 /SiO 2 were obtained by means of a green method mediated by the using the aqueous extract of J. regia shell as the source of reducing biomolecules and as a natural source of plant silicon. Method The β-Bi 2 O 3 /SiO 2 and β-Bi 2 O 3 /Bi 2 O 2.75 /SiO 2 nanostructures were characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS), and photoluminescence spectroscopy. The photocatalytic activity was measured by the degradation of Reactive Black 5 dye (RB-5). Results FT-IR and XPS demonstrated the presence of plant silicon in the bismuth oxide photocatalysts. HR-TEM showed that the crystal size of the as-synthesized materials is ~ 25 nm and revealed that the β-Bi 2 O 3 synthesized with ground shell extract and heat-treated at 300 °C contains the Bi 2 O 2.75 phase. Good photocatalytic activity was found in all the studied materials; particularly, the heat-treated nanostructures showed excellent properties resulting in 92% degradation of RB-5 under UV–Vis light after 15 min of exposure, and 98% after 180 min. Conclusions The findings of this research suggest that the metabolites coating the Bi 2 O 3 , which generate a large amount of hydroxyl radicals, the plant silicon content, and the crystalline defects conferred by the synthesis medium, all contribute to the improved degradation of the azo dye, providing the nanostructures with better photocatalytic activity.
ISSN:2093-3371
2093-3134
2093-3371
DOI:10.1186/s40543-022-00355-0