Loading…
Enhancing explainable SARS-CoV-2 vaccine development leveraging bee colony optimised Bi-LSTM, Bi-GRU models and bioinformatic analysis
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus that caused the outbreak of the coronavirus disease 2019 (COVID-19). The COVID-19 outbreak has led to millions of deaths and economic losses globally. Vaccination is the most practical solution, but findi...
Saved in:
Published in: | Scientific reports 2024-03, Vol.14 (1), p.6737-6737, Article 6737 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c492t-103df245fef87f28da345a223eed293770d675ce0eb2d1a22ba29c8a3d000deb3 |
container_end_page | 6737 |
container_issue | 1 |
container_start_page | 6737 |
container_title | Scientific reports |
container_volume | 14 |
creator | Ozsahin, Dilber Uzun Ameen, Zubaida Said Hassan, Abdurrahman Shuaibu Mubarak, Auwalu Saleh |
description | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus that caused the outbreak of the coronavirus disease 2019 (COVID-19). The COVID-19 outbreak has led to millions of deaths and economic losses globally. Vaccination is the most practical solution, but finding epitopes (antigenic peptide regions) in the SARS-CoV-2 proteome is challenging, costly, and time-consuming. Here, we proposed a deep learning method based on standalone Recurrent Neural networks to predict epitopes from SARS-CoV-2 proteins easily. We optimised the standalone Bidirectional Long Short-Term Memory (Bi-LSTM) and Bidirectional Gated Recurrent Unit (Bi-GRU) with a bioinspired optimisation algorithm, namely, Bee Colony Optimization (BCO). The study shows that LSTM-based models, particularly BCO-Bi-LSTM, outperform all other models and achieve an accuracy of 0.92 and AUC of 0.944. To overcome the challenge of understanding the model predictions, explainable AI using the Shapely Additive Explanations (SHAP) method was employed to explain how Blackbox models make decisions. Finally, the predicted epitopes led to the development of a multi-epitope vaccine. The multi-epitope vaccine effectiveness evaluation is based on vaccine toxicity, allergic response risk, and antigenic and biochemical characteristics using bioinformatic tools. The developed multi-epitope vaccine is non-toxic and highly antigenic. Codon adaptation, cloning, gel electrophoresis assess genomic sequence, protein composition, expression and purification while docking and IMMSIM servers simulate interactions and immunological response, respectively. These investigations provide a conceptual framework for developing a SARS-CoV-2 vaccine. |
doi_str_mv | 10.1038/s41598-024-55762-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0879c567b1da40c293945132c96ba9e8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0879c567b1da40c293945132c96ba9e8</doaj_id><sourcerecordid>2969631686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-103df245fef87f28da345a223eed293770d675ce0eb2d1a22ba29c8a3d000deb3</originalsourceid><addsrcrecordid>eNp9Uk1vEzEUXCEQrUr_AAdkiQsHFvy5Xp9QG5W2UhBS03K1vPbb1JF3HewkIn-A312nKaXlgC9-ejNv7HmaqnpL8CeCWfs5cyJUW2PKayFkQ2v5ojqkmIuaMkpfPqkPquOcF7gcQRUn6nV1wFqBFZH8sPp9Nt6a0fpxjuDXMhg_mi4Amp1czepJ_FFTtDG2wIAcbCDE5QDjCoVSJzPfTXUAyMYQxy2Ky5UffAaHTn09nV1_-7grzq9u0BAdhIzM6FDnox_7mAaz8rZ0TNhmn99Ur3oTMhw_3EfVzdez68lFPf1-fjk5mdaWK7qqi3PXUy566FvZ09YZxoWhlAE4qpiU2DVSWMDQUUcK0BmqbGuYK-4ddOyoutzrumgWepn8YNJWR-P1fSOmuTapfCyAxq1UVjSyI85wbIu84oIwalXTGQVt0fqy11quuwGcLYtJJjwTfY6M_lbP40YTrASXDS4KHx4UUvy5hrzSZX0WQjAjxHXWVElWLGNFC_X9P9RFXKeyvR2rUQ0jTdsUFt2zbIo5J-gff0Ow3sVG72OjS2z0fWy0LEPvnvp4HPkTkkJge0Iu0DiH9Pft_8jeAWE_zcs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969631686</pqid></control><display><type>article</type><title>Enhancing explainable SARS-CoV-2 vaccine development leveraging bee colony optimised Bi-LSTM, Bi-GRU models and bioinformatic analysis</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ozsahin, Dilber Uzun ; Ameen, Zubaida Said ; Hassan, Abdurrahman Shuaibu ; Mubarak, Auwalu Saleh</creator><creatorcontrib>Ozsahin, Dilber Uzun ; Ameen, Zubaida Said ; Hassan, Abdurrahman Shuaibu ; Mubarak, Auwalu Saleh</creatorcontrib><description>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus that caused the outbreak of the coronavirus disease 2019 (COVID-19). The COVID-19 outbreak has led to millions of deaths and economic losses globally. Vaccination is the most practical solution, but finding epitopes (antigenic peptide regions) in the SARS-CoV-2 proteome is challenging, costly, and time-consuming. Here, we proposed a deep learning method based on standalone Recurrent Neural networks to predict epitopes from SARS-CoV-2 proteins easily. We optimised the standalone Bidirectional Long Short-Term Memory (Bi-LSTM) and Bidirectional Gated Recurrent Unit (Bi-GRU) with a bioinspired optimisation algorithm, namely, Bee Colony Optimization (BCO). The study shows that LSTM-based models, particularly BCO-Bi-LSTM, outperform all other models and achieve an accuracy of 0.92 and AUC of 0.944. To overcome the challenge of understanding the model predictions, explainable AI using the Shapely Additive Explanations (SHAP) method was employed to explain how Blackbox models make decisions. Finally, the predicted epitopes led to the development of a multi-epitope vaccine. The multi-epitope vaccine effectiveness evaluation is based on vaccine toxicity, allergic response risk, and antigenic and biochemical characteristics using bioinformatic tools. The developed multi-epitope vaccine is non-toxic and highly antigenic. Codon adaptation, cloning, gel electrophoresis assess genomic sequence, protein composition, expression and purification while docking and IMMSIM servers simulate interactions and immunological response, respectively. These investigations provide a conceptual framework for developing a SARS-CoV-2 vaccine.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-55762-7</identifier><identifier>PMID: 38509174</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/154 ; 631/250 ; Allergies ; Amino acid sequence ; Animals ; Bees ; Biochemical characteristics ; Biochemistry ; Cloning ; Computational Biology - methods ; Coronaviruses ; COVID-19 ; COVID-19 - prevention & control ; COVID-19 Vaccines ; Deep learning ; Epitopes ; Epitopes, B-Lymphocyte ; Epitopes, T-Lymphocyte ; Humanities and Social Sciences ; Humans ; Immune response ; Long short-term memory ; Molecular Docking Simulation ; multidisciplinary ; Neural networks ; Outbreaks ; Protein composition ; Protein purification ; Proteomes ; RNA viruses ; SARS-CoV-2 ; Science ; Science (multidisciplinary) ; Severe acute respiratory syndrome coronavirus 2 ; Toxicity ; Vaccine development ; Vaccine efficacy ; Vaccines ; Viral Vaccines</subject><ispartof>Scientific reports, 2024-03, Vol.14 (1), p.6737-6737, Article 6737</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c492t-103df245fef87f28da345a223eed293770d675ce0eb2d1a22ba29c8a3d000deb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2969631686/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2969631686?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38509174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ozsahin, Dilber Uzun</creatorcontrib><creatorcontrib>Ameen, Zubaida Said</creatorcontrib><creatorcontrib>Hassan, Abdurrahman Shuaibu</creatorcontrib><creatorcontrib>Mubarak, Auwalu Saleh</creatorcontrib><title>Enhancing explainable SARS-CoV-2 vaccine development leveraging bee colony optimised Bi-LSTM, Bi-GRU models and bioinformatic analysis</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus that caused the outbreak of the coronavirus disease 2019 (COVID-19). The COVID-19 outbreak has led to millions of deaths and economic losses globally. Vaccination is the most practical solution, but finding epitopes (antigenic peptide regions) in the SARS-CoV-2 proteome is challenging, costly, and time-consuming. Here, we proposed a deep learning method based on standalone Recurrent Neural networks to predict epitopes from SARS-CoV-2 proteins easily. We optimised the standalone Bidirectional Long Short-Term Memory (Bi-LSTM) and Bidirectional Gated Recurrent Unit (Bi-GRU) with a bioinspired optimisation algorithm, namely, Bee Colony Optimization (BCO). The study shows that LSTM-based models, particularly BCO-Bi-LSTM, outperform all other models and achieve an accuracy of 0.92 and AUC of 0.944. To overcome the challenge of understanding the model predictions, explainable AI using the Shapely Additive Explanations (SHAP) method was employed to explain how Blackbox models make decisions. Finally, the predicted epitopes led to the development of a multi-epitope vaccine. The multi-epitope vaccine effectiveness evaluation is based on vaccine toxicity, allergic response risk, and antigenic and biochemical characteristics using bioinformatic tools. The developed multi-epitope vaccine is non-toxic and highly antigenic. Codon adaptation, cloning, gel electrophoresis assess genomic sequence, protein composition, expression and purification while docking and IMMSIM servers simulate interactions and immunological response, respectively. These investigations provide a conceptual framework for developing a SARS-CoV-2 vaccine.</description><subject>631/114</subject><subject>631/154</subject><subject>631/250</subject><subject>Allergies</subject><subject>Amino acid sequence</subject><subject>Animals</subject><subject>Bees</subject><subject>Biochemical characteristics</subject><subject>Biochemistry</subject><subject>Cloning</subject><subject>Computational Biology - methods</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - prevention & control</subject><subject>COVID-19 Vaccines</subject><subject>Deep learning</subject><subject>Epitopes</subject><subject>Epitopes, B-Lymphocyte</subject><subject>Epitopes, T-Lymphocyte</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immune response</subject><subject>Long short-term memory</subject><subject>Molecular Docking Simulation</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Outbreaks</subject><subject>Protein composition</subject><subject>Protein purification</subject><subject>Proteomes</subject><subject>RNA viruses</subject><subject>SARS-CoV-2</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Toxicity</subject><subject>Vaccine development</subject><subject>Vaccine efficacy</subject><subject>Vaccines</subject><subject>Viral Vaccines</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1vEzEUXCEQrUr_AAdkiQsHFvy5Xp9QG5W2UhBS03K1vPbb1JF3HewkIn-A312nKaXlgC9-ejNv7HmaqnpL8CeCWfs5cyJUW2PKayFkQ2v5ojqkmIuaMkpfPqkPquOcF7gcQRUn6nV1wFqBFZH8sPp9Nt6a0fpxjuDXMhg_mi4Amp1czepJ_FFTtDG2wIAcbCDE5QDjCoVSJzPfTXUAyMYQxy2Ky5UffAaHTn09nV1_-7grzq9u0BAdhIzM6FDnox_7mAaz8rZ0TNhmn99Ur3oTMhw_3EfVzdez68lFPf1-fjk5mdaWK7qqi3PXUy566FvZ09YZxoWhlAE4qpiU2DVSWMDQUUcK0BmqbGuYK-4ddOyoutzrumgWepn8YNJWR-P1fSOmuTapfCyAxq1UVjSyI85wbIu84oIwalXTGQVt0fqy11quuwGcLYtJJjwTfY6M_lbP40YTrASXDS4KHx4UUvy5hrzSZX0WQjAjxHXWVElWLGNFC_X9P9RFXKeyvR2rUQ0jTdsUFt2zbIo5J-gff0Ow3sVG72OjS2z0fWy0LEPvnvp4HPkTkkJge0Iu0DiH9Pft_8jeAWE_zcs</recordid><startdate>20240320</startdate><enddate>20240320</enddate><creator>Ozsahin, Dilber Uzun</creator><creator>Ameen, Zubaida Said</creator><creator>Hassan, Abdurrahman Shuaibu</creator><creator>Mubarak, Auwalu Saleh</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240320</creationdate><title>Enhancing explainable SARS-CoV-2 vaccine development leveraging bee colony optimised Bi-LSTM, Bi-GRU models and bioinformatic analysis</title><author>Ozsahin, Dilber Uzun ; Ameen, Zubaida Said ; Hassan, Abdurrahman Shuaibu ; Mubarak, Auwalu Saleh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-103df245fef87f28da345a223eed293770d675ce0eb2d1a22ba29c8a3d000deb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/114</topic><topic>631/154</topic><topic>631/250</topic><topic>Allergies</topic><topic>Amino acid sequence</topic><topic>Animals</topic><topic>Bees</topic><topic>Biochemical characteristics</topic><topic>Biochemistry</topic><topic>Cloning</topic><topic>Computational Biology - methods</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - prevention & control</topic><topic>COVID-19 Vaccines</topic><topic>Deep learning</topic><topic>Epitopes</topic><topic>Epitopes, B-Lymphocyte</topic><topic>Epitopes, T-Lymphocyte</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immune response</topic><topic>Long short-term memory</topic><topic>Molecular Docking Simulation</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Outbreaks</topic><topic>Protein composition</topic><topic>Protein purification</topic><topic>Proteomes</topic><topic>RNA viruses</topic><topic>SARS-CoV-2</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Toxicity</topic><topic>Vaccine development</topic><topic>Vaccine efficacy</topic><topic>Vaccines</topic><topic>Viral Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozsahin, Dilber Uzun</creatorcontrib><creatorcontrib>Ameen, Zubaida Said</creatorcontrib><creatorcontrib>Hassan, Abdurrahman Shuaibu</creatorcontrib><creatorcontrib>Mubarak, Auwalu Saleh</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Journals (ProQuest Database)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozsahin, Dilber Uzun</au><au>Ameen, Zubaida Said</au><au>Hassan, Abdurrahman Shuaibu</au><au>Mubarak, Auwalu Saleh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing explainable SARS-CoV-2 vaccine development leveraging bee colony optimised Bi-LSTM, Bi-GRU models and bioinformatic analysis</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-03-20</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>6737</spage><epage>6737</epage><pages>6737-6737</pages><artnum>6737</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus that caused the outbreak of the coronavirus disease 2019 (COVID-19). The COVID-19 outbreak has led to millions of deaths and economic losses globally. Vaccination is the most practical solution, but finding epitopes (antigenic peptide regions) in the SARS-CoV-2 proteome is challenging, costly, and time-consuming. Here, we proposed a deep learning method based on standalone Recurrent Neural networks to predict epitopes from SARS-CoV-2 proteins easily. We optimised the standalone Bidirectional Long Short-Term Memory (Bi-LSTM) and Bidirectional Gated Recurrent Unit (Bi-GRU) with a bioinspired optimisation algorithm, namely, Bee Colony Optimization (BCO). The study shows that LSTM-based models, particularly BCO-Bi-LSTM, outperform all other models and achieve an accuracy of 0.92 and AUC of 0.944. To overcome the challenge of understanding the model predictions, explainable AI using the Shapely Additive Explanations (SHAP) method was employed to explain how Blackbox models make decisions. Finally, the predicted epitopes led to the development of a multi-epitope vaccine. The multi-epitope vaccine effectiveness evaluation is based on vaccine toxicity, allergic response risk, and antigenic and biochemical characteristics using bioinformatic tools. The developed multi-epitope vaccine is non-toxic and highly antigenic. Codon adaptation, cloning, gel electrophoresis assess genomic sequence, protein composition, expression and purification while docking and IMMSIM servers simulate interactions and immunological response, respectively. These investigations provide a conceptual framework for developing a SARS-CoV-2 vaccine.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38509174</pmid><doi>10.1038/s41598-024-55762-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-03, Vol.14 (1), p.6737-6737, Article 6737 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0879c567b1da40c293945132c96ba9e8 |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/114 631/154 631/250 Allergies Amino acid sequence Animals Bees Biochemical characteristics Biochemistry Cloning Computational Biology - methods Coronaviruses COVID-19 COVID-19 - prevention & control COVID-19 Vaccines Deep learning Epitopes Epitopes, B-Lymphocyte Epitopes, T-Lymphocyte Humanities and Social Sciences Humans Immune response Long short-term memory Molecular Docking Simulation multidisciplinary Neural networks Outbreaks Protein composition Protein purification Proteomes RNA viruses SARS-CoV-2 Science Science (multidisciplinary) Severe acute respiratory syndrome coronavirus 2 Toxicity Vaccine development Vaccine efficacy Vaccines Viral Vaccines |
title | Enhancing explainable SARS-CoV-2 vaccine development leveraging bee colony optimised Bi-LSTM, Bi-GRU models and bioinformatic analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20explainable%20SARS-CoV-2%20vaccine%20development%20leveraging%20bee%20colony%20optimised%20Bi-LSTM,%20Bi-GRU%20models%20and%20bioinformatic%20analysis&rft.jtitle=Scientific%20reports&rft.au=Ozsahin,%20Dilber%20Uzun&rft.date=2024-03-20&rft.volume=14&rft.issue=1&rft.spage=6737&rft.epage=6737&rft.pages=6737-6737&rft.artnum=6737&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-55762-7&rft_dat=%3Cproquest_doaj_%3E2969631686%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-103df245fef87f28da345a223eed293770d675ce0eb2d1a22ba29c8a3d000deb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2969631686&rft_id=info:pmid/38509174&rfr_iscdi=true |