Loading…
Ultrasensitive Electrochemical Detection of Butylated Hydroxy Anisole via Metalloporphyrin Covalent Organic Frameworks Possessing Variable Catalytic Active Sites
Three novel two-dimensional metalloporphyrin COFs (MPor−COF−366, M = Fe, Mn, Cu) were fabricated by changing the metal atoms in the center of the porphyrin framework. The physicochemical characteristics of MPor−COF−366 (M = Fe, Mn, Cu) composites were fully analyzed by diverse electron microscopy an...
Saved in:
Published in: | Biosensors (Basel) 2022-11, Vol.12 (11), p.975 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Three novel two-dimensional metalloporphyrin COFs (MPor−COF−366, M = Fe, Mn, Cu) were fabricated by changing the metal atoms in the center of the porphyrin framework. The physicochemical characteristics of MPor−COF−366 (M = Fe, Mn, Cu) composites were fully analyzed by diverse electron microscopy and spectroscopy. Under optimal conditions, experiments on determining butylated hydroxy anisole (BHA) at FePor−COF−366/GCE were conducted using differential pulse voltammetry (DPV). It is noted that the FePor−COF−366/GCE sensor showed excellent electrocatalytic performance in the electrochemical detection of BHA, compared with MnPor−COF−366/GCE and CuPor−COF−366/GCE. A linear relationship was obtained for 0.04–1000 μM concentration of BHA, with a low detection limit of 0.015 μM. Additionally, the designed sensor was successfully employed to detect BHA in practical samples, expanding the development of COF-based composites in electrochemical applications. |
---|---|
ISSN: | 2079-6374 2079-6374 |
DOI: | 10.3390/bios12110975 |