Loading…

Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing

DNA methylation plays a fundamental role in the control of gene expression and genome integrity. Although there are multiple tools that enable its detection from Nanopore sequencing, their accuracy remains largely unknown. Here, we present a systematic benchmarking of tools for the detection of CpG...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-06, Vol.12 (1), p.3438-3438, Article 3438
Main Authors: Yuen, Zaka Wing-Sze, Srivastava, Akanksha, Daniel, Runa, McNevin, Dennis, Jack, Cameron, Eyras, Eduardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-9d69832ae75eb74d066825dbe942146a4878d14a5bf7cd48ba196906eafea0003
cites cdi_FETCH-LOGICAL-c606t-9d69832ae75eb74d066825dbe942146a4878d14a5bf7cd48ba196906eafea0003
container_end_page 3438
container_issue 1
container_start_page 3438
container_title Nature communications
container_volume 12
creator Yuen, Zaka Wing-Sze
Srivastava, Akanksha
Daniel, Runa
McNevin, Dennis
Jack, Cameron
Eyras, Eduardo
description DNA methylation plays a fundamental role in the control of gene expression and genome integrity. Although there are multiple tools that enable its detection from Nanopore sequencing, their accuracy remains largely unknown. Here, we present a systematic benchmarking of tools for the detection of CpG methylation from Nanopore sequencing using individual reads, control mixtures of methylated and unmethylated reads, and bisulfite sequencing. We found that tools have a tradeoff between false positives and false negatives and present a high dispersion with respect to the expected methylation frequency values. We described various strategies to improve the accuracy of these tools, including a consensus approach, METEORE ( https://github.com/comprna/METEORE ), based on the combination of the predictions from two or more tools that shows improved accuracy over individual tools. Snakemake pipelines are also provided for reproducibility and to enable the systematic application of our analyses to other datasets. Several existing algorithms predict the methylation of DNA using Nanopore sequencing signals, but it is unclear how they compare in performance. Here, the authors benchmark the performance of several such tools, and propose METEORE, a consensus tool that improves prediction accuracy.
doi_str_mv 10.1038/s41467-021-23778-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_08b6b5b4d12c45159aef5d1595b46fac</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_08b6b5b4d12c45159aef5d1595b46fac</doaj_id><sourcerecordid>2539526528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-9d69832ae75eb74d066825dbe942146a4878d14a5bf7cd48ba196906eafea0003</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CALHHhErAdf-WChFZQKlXiAIij5diT3SyJvdjZSvvvmd2U0nLAl7Fm3nk8M56qesnoW0Yb864IJpSuKWc1b7Q2tXpSnXMqWM00b54-uJ9Vl6VsKZ6mZUaI59VZI5AhKTuvfnw9lBkmNw-edBD9ZnL55xDXJPVkTmkspE-ZrHZXZIJ5cxhRmCIJMIM_3fqcJhJdTLuUgRT4tUcI5r-onvVuLHB5Zy-q758-flt9rm--XF2vPtzUXlE1121QrWm4Ay2h0yJQpQyXoYNWcOzPCaNNYMLJrtc-CNM51qqWKnA9uGNHF9X1wg3Jbe0uD1j_wSY32JMj5bV1GZsbwVLTqU52IjDuhWSyddDLgBZ9qnceWe8X1m7fTRA8xDm78RH0cSQOG7tOt9YwoxvNEPDmDpATDqLMdhqKh3F0EdK-WC6bVnIluUHp63-k27TPEUd1VBmjteACVXxR-ZxKydDfF8OoPa6BXdbA4hrY0xpYhUmvHrZxn_Ln01HQLIKCobiG_Pft_2B_A9CTvkE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2538877424</pqid></control><display><type>article</type><title>Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yuen, Zaka Wing-Sze ; Srivastava, Akanksha ; Daniel, Runa ; McNevin, Dennis ; Jack, Cameron ; Eyras, Eduardo</creator><creatorcontrib>Yuen, Zaka Wing-Sze ; Srivastava, Akanksha ; Daniel, Runa ; McNevin, Dennis ; Jack, Cameron ; Eyras, Eduardo</creatorcontrib><description>DNA methylation plays a fundamental role in the control of gene expression and genome integrity. Although there are multiple tools that enable its detection from Nanopore sequencing, their accuracy remains largely unknown. Here, we present a systematic benchmarking of tools for the detection of CpG methylation from Nanopore sequencing using individual reads, control mixtures of methylated and unmethylated reads, and bisulfite sequencing. We found that tools have a tradeoff between false positives and false negatives and present a high dispersion with respect to the expected methylation frequency values. We described various strategies to improve the accuracy of these tools, including a consensus approach, METEORE ( https://github.com/comprna/METEORE ), based on the combination of the predictions from two or more tools that shows improved accuracy over individual tools. Snakemake pipelines are also provided for reproducibility and to enable the systematic application of our analyses to other datasets. Several existing algorithms predict the methylation of DNA using Nanopore sequencing signals, but it is unclear how they compare in performance. Here, the authors benchmark the performance of several such tools, and propose METEORE, a consensus tool that improves prediction accuracy.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-23778-6</identifier><identifier>PMID: 34103501</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/23 ; 631/114/2785 ; 631/114/794 ; 631/1647/514/1948 ; 631/208/177 ; Accuracy ; Algorithms ; Benchmarking ; Benchmarks ; Bisulfite ; CpG islands ; CpG Islands - genetics ; CRISPR-Associated Protein 9 - metabolism ; Cytosine - metabolism ; Deoxyribonucleic acid ; DNA ; DNA - metabolism ; DNA methylation ; DNA Methylation - genetics ; DNA sequencing ; Escherichia coli - genetics ; Gene expression ; Genome, Bacterial ; Genomes ; Humanities and Social Sciences ; multidisciplinary ; Nanopore Sequencing ; ROC Curve ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2021-06, Vol.12 (1), p.3438-3438, Article 3438</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-9d69832ae75eb74d066825dbe942146a4878d14a5bf7cd48ba196906eafea0003</citedby><cites>FETCH-LOGICAL-c606t-9d69832ae75eb74d066825dbe942146a4878d14a5bf7cd48ba196906eafea0003</cites><orcidid>0000-0002-4553-9232 ; 0000-0003-1665-3367 ; 0000-0002-0330-075X ; 0000-0003-0793-6218 ; 0000-0002-8567-9168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2538877424/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2538877424?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34103501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuen, Zaka Wing-Sze</creatorcontrib><creatorcontrib>Srivastava, Akanksha</creatorcontrib><creatorcontrib>Daniel, Runa</creatorcontrib><creatorcontrib>McNevin, Dennis</creatorcontrib><creatorcontrib>Jack, Cameron</creatorcontrib><creatorcontrib>Eyras, Eduardo</creatorcontrib><title>Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>DNA methylation plays a fundamental role in the control of gene expression and genome integrity. Although there are multiple tools that enable its detection from Nanopore sequencing, their accuracy remains largely unknown. Here, we present a systematic benchmarking of tools for the detection of CpG methylation from Nanopore sequencing using individual reads, control mixtures of methylated and unmethylated reads, and bisulfite sequencing. We found that tools have a tradeoff between false positives and false negatives and present a high dispersion with respect to the expected methylation frequency values. We described various strategies to improve the accuracy of these tools, including a consensus approach, METEORE ( https://github.com/comprna/METEORE ), based on the combination of the predictions from two or more tools that shows improved accuracy over individual tools. Snakemake pipelines are also provided for reproducibility and to enable the systematic application of our analyses to other datasets. Several existing algorithms predict the methylation of DNA using Nanopore sequencing signals, but it is unclear how they compare in performance. Here, the authors benchmark the performance of several such tools, and propose METEORE, a consensus tool that improves prediction accuracy.</description><subject>45/23</subject><subject>631/114/2785</subject><subject>631/114/794</subject><subject>631/1647/514/1948</subject><subject>631/208/177</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Benchmarking</subject><subject>Benchmarks</subject><subject>Bisulfite</subject><subject>CpG islands</subject><subject>CpG Islands - genetics</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>Cytosine - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA methylation</subject><subject>DNA Methylation - genetics</subject><subject>DNA sequencing</subject><subject>Escherichia coli - genetics</subject><subject>Gene expression</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nanopore Sequencing</subject><subject>ROC Curve</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CALHHhErAdf-WChFZQKlXiAIij5diT3SyJvdjZSvvvmd2U0nLAl7Fm3nk8M56qesnoW0Yb864IJpSuKWc1b7Q2tXpSnXMqWM00b54-uJ9Vl6VsKZ6mZUaI59VZI5AhKTuvfnw9lBkmNw-edBD9ZnL55xDXJPVkTmkspE-ZrHZXZIJ5cxhRmCIJMIM_3fqcJhJdTLuUgRT4tUcI5r-onvVuLHB5Zy-q758-flt9rm--XF2vPtzUXlE1121QrWm4Ay2h0yJQpQyXoYNWcOzPCaNNYMLJrtc-CNM51qqWKnA9uGNHF9X1wg3Jbe0uD1j_wSY32JMj5bV1GZsbwVLTqU52IjDuhWSyddDLgBZ9qnceWe8X1m7fTRA8xDm78RH0cSQOG7tOt9YwoxvNEPDmDpATDqLMdhqKh3F0EdK-WC6bVnIluUHp63-k27TPEUd1VBmjteACVXxR-ZxKydDfF8OoPa6BXdbA4hrY0xpYhUmvHrZxn_Ln01HQLIKCobiG_Pft_2B_A9CTvkE</recordid><startdate>20210608</startdate><enddate>20210608</enddate><creator>Yuen, Zaka Wing-Sze</creator><creator>Srivastava, Akanksha</creator><creator>Daniel, Runa</creator><creator>McNevin, Dennis</creator><creator>Jack, Cameron</creator><creator>Eyras, Eduardo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4553-9232</orcidid><orcidid>https://orcid.org/0000-0003-1665-3367</orcidid><orcidid>https://orcid.org/0000-0002-0330-075X</orcidid><orcidid>https://orcid.org/0000-0003-0793-6218</orcidid><orcidid>https://orcid.org/0000-0002-8567-9168</orcidid></search><sort><creationdate>20210608</creationdate><title>Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing</title><author>Yuen, Zaka Wing-Sze ; Srivastava, Akanksha ; Daniel, Runa ; McNevin, Dennis ; Jack, Cameron ; Eyras, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-9d69832ae75eb74d066825dbe942146a4878d14a5bf7cd48ba196906eafea0003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>45/23</topic><topic>631/114/2785</topic><topic>631/114/794</topic><topic>631/1647/514/1948</topic><topic>631/208/177</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Benchmarking</topic><topic>Benchmarks</topic><topic>Bisulfite</topic><topic>CpG islands</topic><topic>CpG Islands - genetics</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>Cytosine - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA methylation</topic><topic>DNA Methylation - genetics</topic><topic>DNA sequencing</topic><topic>Escherichia coli - genetics</topic><topic>Gene expression</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nanopore Sequencing</topic><topic>ROC Curve</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuen, Zaka Wing-Sze</creatorcontrib><creatorcontrib>Srivastava, Akanksha</creatorcontrib><creatorcontrib>Daniel, Runa</creatorcontrib><creatorcontrib>McNevin, Dennis</creatorcontrib><creatorcontrib>Jack, Cameron</creatorcontrib><creatorcontrib>Eyras, Eduardo</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuen, Zaka Wing-Sze</au><au>Srivastava, Akanksha</au><au>Daniel, Runa</au><au>McNevin, Dennis</au><au>Jack, Cameron</au><au>Eyras, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-06-08</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>3438</spage><epage>3438</epage><pages>3438-3438</pages><artnum>3438</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>DNA methylation plays a fundamental role in the control of gene expression and genome integrity. Although there are multiple tools that enable its detection from Nanopore sequencing, their accuracy remains largely unknown. Here, we present a systematic benchmarking of tools for the detection of CpG methylation from Nanopore sequencing using individual reads, control mixtures of methylated and unmethylated reads, and bisulfite sequencing. We found that tools have a tradeoff between false positives and false negatives and present a high dispersion with respect to the expected methylation frequency values. We described various strategies to improve the accuracy of these tools, including a consensus approach, METEORE ( https://github.com/comprna/METEORE ), based on the combination of the predictions from two or more tools that shows improved accuracy over individual tools. Snakemake pipelines are also provided for reproducibility and to enable the systematic application of our analyses to other datasets. Several existing algorithms predict the methylation of DNA using Nanopore sequencing signals, but it is unclear how they compare in performance. Here, the authors benchmark the performance of several such tools, and propose METEORE, a consensus tool that improves prediction accuracy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34103501</pmid><doi>10.1038/s41467-021-23778-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4553-9232</orcidid><orcidid>https://orcid.org/0000-0003-1665-3367</orcidid><orcidid>https://orcid.org/0000-0002-0330-075X</orcidid><orcidid>https://orcid.org/0000-0003-0793-6218</orcidid><orcidid>https://orcid.org/0000-0002-8567-9168</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-06, Vol.12 (1), p.3438-3438, Article 3438
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_08b6b5b4d12c45159aef5d1595b46fac
source NCBI_PubMed Central(免费); Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 45/23
631/114/2785
631/114/794
631/1647/514/1948
631/208/177
Accuracy
Algorithms
Benchmarking
Benchmarks
Bisulfite
CpG islands
CpG Islands - genetics
CRISPR-Associated Protein 9 - metabolism
Cytosine - metabolism
Deoxyribonucleic acid
DNA
DNA - metabolism
DNA methylation
DNA Methylation - genetics
DNA sequencing
Escherichia coli - genetics
Gene expression
Genome, Bacterial
Genomes
Humanities and Social Sciences
multidisciplinary
Nanopore Sequencing
ROC Curve
Science
Science (multidisciplinary)
title Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20benchmarking%20of%20tools%20for%20CpG%20methylation%20detection%20from%20nanopore%20sequencing&rft.jtitle=Nature%20communications&rft.au=Yuen,%20Zaka%20Wing-Sze&rft.date=2021-06-08&rft.volume=12&rft.issue=1&rft.spage=3438&rft.epage=3438&rft.pages=3438-3438&rft.artnum=3438&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-23778-6&rft_dat=%3Cproquest_doaj_%3E2539526528%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-9d69832ae75eb74d066825dbe942146a4878d14a5bf7cd48ba196906eafea0003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2538877424&rft_id=info:pmid/34103501&rfr_iscdi=true