Loading…
Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing
DNA methylation plays a fundamental role in the control of gene expression and genome integrity. Although there are multiple tools that enable its detection from Nanopore sequencing, their accuracy remains largely unknown. Here, we present a systematic benchmarking of tools for the detection of CpG...
Saved in:
Published in: | Nature communications 2021-06, Vol.12 (1), p.3438-3438, Article 3438 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c606t-9d69832ae75eb74d066825dbe942146a4878d14a5bf7cd48ba196906eafea0003 |
---|---|
cites | cdi_FETCH-LOGICAL-c606t-9d69832ae75eb74d066825dbe942146a4878d14a5bf7cd48ba196906eafea0003 |
container_end_page | 3438 |
container_issue | 1 |
container_start_page | 3438 |
container_title | Nature communications |
container_volume | 12 |
creator | Yuen, Zaka Wing-Sze Srivastava, Akanksha Daniel, Runa McNevin, Dennis Jack, Cameron Eyras, Eduardo |
description | DNA methylation plays a fundamental role in the control of gene expression and genome integrity. Although there are multiple tools that enable its detection from Nanopore sequencing, their accuracy remains largely unknown. Here, we present a systematic benchmarking of tools for the detection of CpG methylation from Nanopore sequencing using individual reads, control mixtures of methylated and unmethylated reads, and bisulfite sequencing. We found that tools have a tradeoff between false positives and false negatives and present a high dispersion with respect to the expected methylation frequency values. We described various strategies to improve the accuracy of these tools, including a consensus approach, METEORE (
https://github.com/comprna/METEORE
), based on the combination of the predictions from two or more tools that shows improved accuracy over individual tools. Snakemake pipelines are also provided for reproducibility and to enable the systematic application of our analyses to other datasets.
Several existing algorithms predict the methylation of DNA using Nanopore sequencing signals, but it is unclear how they compare in performance. Here, the authors benchmark the performance of several such tools, and propose METEORE, a consensus tool that improves prediction accuracy. |
doi_str_mv | 10.1038/s41467-021-23778-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_08b6b5b4d12c45159aef5d1595b46fac</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_08b6b5b4d12c45159aef5d1595b46fac</doaj_id><sourcerecordid>2539526528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-9d69832ae75eb74d066825dbe942146a4878d14a5bf7cd48ba196906eafea0003</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CALHHhErAdf-WChFZQKlXiAIij5diT3SyJvdjZSvvvmd2U0nLAl7Fm3nk8M56qesnoW0Yb864IJpSuKWc1b7Q2tXpSnXMqWM00b54-uJ9Vl6VsKZ6mZUaI59VZI5AhKTuvfnw9lBkmNw-edBD9ZnL55xDXJPVkTmkspE-ZrHZXZIJ5cxhRmCIJMIM_3fqcJhJdTLuUgRT4tUcI5r-onvVuLHB5Zy-q758-flt9rm--XF2vPtzUXlE1121QrWm4Ay2h0yJQpQyXoYNWcOzPCaNNYMLJrtc-CNM51qqWKnA9uGNHF9X1wg3Jbe0uD1j_wSY32JMj5bV1GZsbwVLTqU52IjDuhWSyddDLgBZ9qnceWe8X1m7fTRA8xDm78RH0cSQOG7tOt9YwoxvNEPDmDpATDqLMdhqKh3F0EdK-WC6bVnIluUHp63-k27TPEUd1VBmjteACVXxR-ZxKydDfF8OoPa6BXdbA4hrY0xpYhUmvHrZxn_Ln01HQLIKCobiG_Pft_2B_A9CTvkE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2538877424</pqid></control><display><type>article</type><title>Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yuen, Zaka Wing-Sze ; Srivastava, Akanksha ; Daniel, Runa ; McNevin, Dennis ; Jack, Cameron ; Eyras, Eduardo</creator><creatorcontrib>Yuen, Zaka Wing-Sze ; Srivastava, Akanksha ; Daniel, Runa ; McNevin, Dennis ; Jack, Cameron ; Eyras, Eduardo</creatorcontrib><description>DNA methylation plays a fundamental role in the control of gene expression and genome integrity. Although there are multiple tools that enable its detection from Nanopore sequencing, their accuracy remains largely unknown. Here, we present a systematic benchmarking of tools for the detection of CpG methylation from Nanopore sequencing using individual reads, control mixtures of methylated and unmethylated reads, and bisulfite sequencing. We found that tools have a tradeoff between false positives and false negatives and present a high dispersion with respect to the expected methylation frequency values. We described various strategies to improve the accuracy of these tools, including a consensus approach, METEORE (
https://github.com/comprna/METEORE
), based on the combination of the predictions from two or more tools that shows improved accuracy over individual tools. Snakemake pipelines are also provided for reproducibility and to enable the systematic application of our analyses to other datasets.
Several existing algorithms predict the methylation of DNA using Nanopore sequencing signals, but it is unclear how they compare in performance. Here, the authors benchmark the performance of several such tools, and propose METEORE, a consensus tool that improves prediction accuracy.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-23778-6</identifier><identifier>PMID: 34103501</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/23 ; 631/114/2785 ; 631/114/794 ; 631/1647/514/1948 ; 631/208/177 ; Accuracy ; Algorithms ; Benchmarking ; Benchmarks ; Bisulfite ; CpG islands ; CpG Islands - genetics ; CRISPR-Associated Protein 9 - metabolism ; Cytosine - metabolism ; Deoxyribonucleic acid ; DNA ; DNA - metabolism ; DNA methylation ; DNA Methylation - genetics ; DNA sequencing ; Escherichia coli - genetics ; Gene expression ; Genome, Bacterial ; Genomes ; Humanities and Social Sciences ; multidisciplinary ; Nanopore Sequencing ; ROC Curve ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2021-06, Vol.12 (1), p.3438-3438, Article 3438</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-9d69832ae75eb74d066825dbe942146a4878d14a5bf7cd48ba196906eafea0003</citedby><cites>FETCH-LOGICAL-c606t-9d69832ae75eb74d066825dbe942146a4878d14a5bf7cd48ba196906eafea0003</cites><orcidid>0000-0002-4553-9232 ; 0000-0003-1665-3367 ; 0000-0002-0330-075X ; 0000-0003-0793-6218 ; 0000-0002-8567-9168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2538877424/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2538877424?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34103501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuen, Zaka Wing-Sze</creatorcontrib><creatorcontrib>Srivastava, Akanksha</creatorcontrib><creatorcontrib>Daniel, Runa</creatorcontrib><creatorcontrib>McNevin, Dennis</creatorcontrib><creatorcontrib>Jack, Cameron</creatorcontrib><creatorcontrib>Eyras, Eduardo</creatorcontrib><title>Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>DNA methylation plays a fundamental role in the control of gene expression and genome integrity. Although there are multiple tools that enable its detection from Nanopore sequencing, their accuracy remains largely unknown. Here, we present a systematic benchmarking of tools for the detection of CpG methylation from Nanopore sequencing using individual reads, control mixtures of methylated and unmethylated reads, and bisulfite sequencing. We found that tools have a tradeoff between false positives and false negatives and present a high dispersion with respect to the expected methylation frequency values. We described various strategies to improve the accuracy of these tools, including a consensus approach, METEORE (
https://github.com/comprna/METEORE
), based on the combination of the predictions from two or more tools that shows improved accuracy over individual tools. Snakemake pipelines are also provided for reproducibility and to enable the systematic application of our analyses to other datasets.
Several existing algorithms predict the methylation of DNA using Nanopore sequencing signals, but it is unclear how they compare in performance. Here, the authors benchmark the performance of several such tools, and propose METEORE, a consensus tool that improves prediction accuracy.</description><subject>45/23</subject><subject>631/114/2785</subject><subject>631/114/794</subject><subject>631/1647/514/1948</subject><subject>631/208/177</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Benchmarking</subject><subject>Benchmarks</subject><subject>Bisulfite</subject><subject>CpG islands</subject><subject>CpG Islands - genetics</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>Cytosine - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA methylation</subject><subject>DNA Methylation - genetics</subject><subject>DNA sequencing</subject><subject>Escherichia coli - genetics</subject><subject>Gene expression</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nanopore Sequencing</subject><subject>ROC Curve</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CALHHhErAdf-WChFZQKlXiAIij5diT3SyJvdjZSvvvmd2U0nLAl7Fm3nk8M56qesnoW0Yb864IJpSuKWc1b7Q2tXpSnXMqWM00b54-uJ9Vl6VsKZ6mZUaI59VZI5AhKTuvfnw9lBkmNw-edBD9ZnL55xDXJPVkTmkspE-ZrHZXZIJ5cxhRmCIJMIM_3fqcJhJdTLuUgRT4tUcI5r-onvVuLHB5Zy-q758-flt9rm--XF2vPtzUXlE1121QrWm4Ay2h0yJQpQyXoYNWcOzPCaNNYMLJrtc-CNM51qqWKnA9uGNHF9X1wg3Jbe0uD1j_wSY32JMj5bV1GZsbwVLTqU52IjDuhWSyddDLgBZ9qnceWe8X1m7fTRA8xDm78RH0cSQOG7tOt9YwoxvNEPDmDpATDqLMdhqKh3F0EdK-WC6bVnIluUHp63-k27TPEUd1VBmjteACVXxR-ZxKydDfF8OoPa6BXdbA4hrY0xpYhUmvHrZxn_Ln01HQLIKCobiG_Pft_2B_A9CTvkE</recordid><startdate>20210608</startdate><enddate>20210608</enddate><creator>Yuen, Zaka Wing-Sze</creator><creator>Srivastava, Akanksha</creator><creator>Daniel, Runa</creator><creator>McNevin, Dennis</creator><creator>Jack, Cameron</creator><creator>Eyras, Eduardo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4553-9232</orcidid><orcidid>https://orcid.org/0000-0003-1665-3367</orcidid><orcidid>https://orcid.org/0000-0002-0330-075X</orcidid><orcidid>https://orcid.org/0000-0003-0793-6218</orcidid><orcidid>https://orcid.org/0000-0002-8567-9168</orcidid></search><sort><creationdate>20210608</creationdate><title>Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing</title><author>Yuen, Zaka Wing-Sze ; Srivastava, Akanksha ; Daniel, Runa ; McNevin, Dennis ; Jack, Cameron ; Eyras, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-9d69832ae75eb74d066825dbe942146a4878d14a5bf7cd48ba196906eafea0003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>45/23</topic><topic>631/114/2785</topic><topic>631/114/794</topic><topic>631/1647/514/1948</topic><topic>631/208/177</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Benchmarking</topic><topic>Benchmarks</topic><topic>Bisulfite</topic><topic>CpG islands</topic><topic>CpG Islands - genetics</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>Cytosine - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA methylation</topic><topic>DNA Methylation - genetics</topic><topic>DNA sequencing</topic><topic>Escherichia coli - genetics</topic><topic>Gene expression</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nanopore Sequencing</topic><topic>ROC Curve</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuen, Zaka Wing-Sze</creatorcontrib><creatorcontrib>Srivastava, Akanksha</creatorcontrib><creatorcontrib>Daniel, Runa</creatorcontrib><creatorcontrib>McNevin, Dennis</creatorcontrib><creatorcontrib>Jack, Cameron</creatorcontrib><creatorcontrib>Eyras, Eduardo</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuen, Zaka Wing-Sze</au><au>Srivastava, Akanksha</au><au>Daniel, Runa</au><au>McNevin, Dennis</au><au>Jack, Cameron</au><au>Eyras, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-06-08</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>3438</spage><epage>3438</epage><pages>3438-3438</pages><artnum>3438</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>DNA methylation plays a fundamental role in the control of gene expression and genome integrity. Although there are multiple tools that enable its detection from Nanopore sequencing, their accuracy remains largely unknown. Here, we present a systematic benchmarking of tools for the detection of CpG methylation from Nanopore sequencing using individual reads, control mixtures of methylated and unmethylated reads, and bisulfite sequencing. We found that tools have a tradeoff between false positives and false negatives and present a high dispersion with respect to the expected methylation frequency values. We described various strategies to improve the accuracy of these tools, including a consensus approach, METEORE (
https://github.com/comprna/METEORE
), based on the combination of the predictions from two or more tools that shows improved accuracy over individual tools. Snakemake pipelines are also provided for reproducibility and to enable the systematic application of our analyses to other datasets.
Several existing algorithms predict the methylation of DNA using Nanopore sequencing signals, but it is unclear how they compare in performance. Here, the authors benchmark the performance of several such tools, and propose METEORE, a consensus tool that improves prediction accuracy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34103501</pmid><doi>10.1038/s41467-021-23778-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4553-9232</orcidid><orcidid>https://orcid.org/0000-0003-1665-3367</orcidid><orcidid>https://orcid.org/0000-0002-0330-075X</orcidid><orcidid>https://orcid.org/0000-0003-0793-6218</orcidid><orcidid>https://orcid.org/0000-0002-8567-9168</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-06, Vol.12 (1), p.3438-3438, Article 3438 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_08b6b5b4d12c45159aef5d1595b46fac |
source | NCBI_PubMed Central(免费); Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 45/23 631/114/2785 631/114/794 631/1647/514/1948 631/208/177 Accuracy Algorithms Benchmarking Benchmarks Bisulfite CpG islands CpG Islands - genetics CRISPR-Associated Protein 9 - metabolism Cytosine - metabolism Deoxyribonucleic acid DNA DNA - metabolism DNA methylation DNA Methylation - genetics DNA sequencing Escherichia coli - genetics Gene expression Genome, Bacterial Genomes Humanities and Social Sciences multidisciplinary Nanopore Sequencing ROC Curve Science Science (multidisciplinary) |
title | Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A14%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20benchmarking%20of%20tools%20for%20CpG%20methylation%20detection%20from%20nanopore%20sequencing&rft.jtitle=Nature%20communications&rft.au=Yuen,%20Zaka%20Wing-Sze&rft.date=2021-06-08&rft.volume=12&rft.issue=1&rft.spage=3438&rft.epage=3438&rft.pages=3438-3438&rft.artnum=3438&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-23778-6&rft_dat=%3Cproquest_doaj_%3E2539526528%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-9d69832ae75eb74d066825dbe942146a4878d14a5bf7cd48ba196906eafea0003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2538877424&rft_id=info:pmid/34103501&rfr_iscdi=true |