Loading…

Stability and Hopf Bifurcation of an n-Neuron Cohen-Grossberg Neural Network with Time Delays

A Cohen-Grossberg neural network with discrete delays is investigated in this paper. Sufficient conditions for the existence of local Hopf bifurcation are obtained by analyzing the distribution of roots of characteristic equation. Moreover, the direction and stability of Hopf bifurcation are obtaine...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Applied Mathematics 2014-01, Vol.2014 (2014), p.64-73-406
Main Authors: Liu, Qiming, Yang, Sumin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a545t-a19670ea5ca6f654c23ef96d0985283c4fe827292d88ffc64e14b38a5f6430673
cites cdi_FETCH-LOGICAL-a545t-a19670ea5ca6f654c23ef96d0985283c4fe827292d88ffc64e14b38a5f6430673
container_end_page 73-406
container_issue 2014
container_start_page 64
container_title Journal of Applied Mathematics
container_volume 2014
creator Liu, Qiming
Yang, Sumin
description A Cohen-Grossberg neural network with discrete delays is investigated in this paper. Sufficient conditions for the existence of local Hopf bifurcation are obtained by analyzing the distribution of roots of characteristic equation. Moreover, the direction and stability of Hopf bifurcation are obtained by applying the normal form theory and the center manifold theorem. Numerical simulations are given to illustrate the obtained results.
doi_str_mv 10.1155/2014/468584
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_08e0a4967e2e4232b53e3eaadd2999d3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20160908001_201412_201609190040_201609190040_64_73_406</airiti_id><doaj_id>oai_doaj_org_article_08e0a4967e2e4232b53e3eaadd2999d3</doaj_id><sourcerecordid>3440070291</sourcerecordid><originalsourceid>FETCH-LOGICAL-a545t-a19670ea5ca6f654c23ef96d0985283c4fe827292d88ffc64e14b38a5f6430673</originalsourceid><addsrcrecordid>eNqFks1v1DAQxSMEEqVw4owUiQsChY4_E98oC7SVVgWJVuKCrNlk3PWSjRcn0Wr_e7zNalG5cBr7zU_PTzPOspcM3jOm1BkHJs-krlQlH2UnTFdlASD543RmDIpSlT-eZs_6fgXAQRl2kv38PuDCt37Y5dg1-WXYuPyjd2OscfChy4NLet4V1zTGdJ2FJXXFRQx9v6B4l-9lbFMZtiH-yrd-WOY3fk35J2px1z_Pnjhse3pxqKfZ7ZfPN7PLYv714mp2Pi9QSTUUyIwugVDVqJ1WsuaCnNENmErxStTSUcVLbnhTVc7VWhKTC1GhcloK0KU4za4m3ybgym6iX2Pc2YDe3gsh3lmMg69bslARoEzvESfJBV8oQYIQm4YbYxqRvD5MXpsYVlQPNNatbx6Yzm7nB_VQVri2THIlQKWpJos3R4vfI_WDXfu-prbFjsLYW6ZLpkzJlUno63_QVRhjl4ZlmdIpoAC-z_Ruour95CO5YxwGdr95u9-8nTaf6LcTvfRdg1v_H_jVBFNCyOERlqUwUKX-9dRHH_3g_8b7llw0JASA3TsybieJmfTp4OFFS1sKK0GLP1IZyjo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564233023</pqid></control><display><type>article</type><title>Stability and Hopf Bifurcation of an n-Neuron Cohen-Grossberg Neural Network with Time Delays</title><source>Publicly Available Content (ProQuest)</source><source>IngentaConnect Journals</source><source>Wiley Open Access</source><creator>Liu, Qiming ; Yang, Sumin</creator><contributor>Li, Wan-Tong</contributor><creatorcontrib>Liu, Qiming ; Yang, Sumin ; Li, Wan-Tong</creatorcontrib><description>A Cohen-Grossberg neural network with discrete delays is investigated in this paper. Sufficient conditions for the existence of local Hopf bifurcation are obtained by analyzing the distribution of roots of characteristic equation. Moreover, the direction and stability of Hopf bifurcation are obtained by applying the normal form theory and the center manifold theorem. Numerical simulations are given to illustrate the obtained results.</description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2014/468584</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Architectural engineering ; Behavior ; Computer simulation ; Delay ; Equilibrium ; Hopf bifurcation ; Mathematical analysis ; Mathematical models ; Mechanical engineering ; Neural networks ; Stability ; Studies ; Time delay</subject><ispartof>Journal of Applied Mathematics, 2014-01, Vol.2014 (2014), p.64-73-406</ispartof><rights>Copyright © 2014 Qiming Liu and Sumin Yang.</rights><rights>Copyright © 2014 Qiming Liu and Sumin Yang. Qiming Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2014 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a545t-a19670ea5ca6f654c23ef96d0985283c4fe827292d88ffc64e14b38a5f6430673</citedby><cites>FETCH-LOGICAL-a545t-a19670ea5ca6f654c23ef96d0985283c4fe827292d88ffc64e14b38a5f6430673</cites><orcidid>0000-0002-2192-7679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1564233023/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1564233023?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,25734,27905,27906,36993,36994,44571,74875</link.rule.ids></links><search><contributor>Li, Wan-Tong</contributor><creatorcontrib>Liu, Qiming</creatorcontrib><creatorcontrib>Yang, Sumin</creatorcontrib><title>Stability and Hopf Bifurcation of an n-Neuron Cohen-Grossberg Neural Network with Time Delays</title><title>Journal of Applied Mathematics</title><description>A Cohen-Grossberg neural network with discrete delays is investigated in this paper. Sufficient conditions for the existence of local Hopf bifurcation are obtained by analyzing the distribution of roots of characteristic equation. Moreover, the direction and stability of Hopf bifurcation are obtained by applying the normal form theory and the center manifold theorem. Numerical simulations are given to illustrate the obtained results.</description><subject>Architectural engineering</subject><subject>Behavior</subject><subject>Computer simulation</subject><subject>Delay</subject><subject>Equilibrium</subject><subject>Hopf bifurcation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Neural networks</subject><subject>Stability</subject><subject>Studies</subject><subject>Time delay</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFks1v1DAQxSMEEqVw4owUiQsChY4_E98oC7SVVgWJVuKCrNlk3PWSjRcn0Wr_e7zNalG5cBr7zU_PTzPOspcM3jOm1BkHJs-krlQlH2UnTFdlASD543RmDIpSlT-eZs_6fgXAQRl2kv38PuDCt37Y5dg1-WXYuPyjd2OscfChy4NLet4V1zTGdJ2FJXXFRQx9v6B4l-9lbFMZtiH-yrd-WOY3fk35J2px1z_Pnjhse3pxqKfZ7ZfPN7PLYv714mp2Pi9QSTUUyIwugVDVqJ1WsuaCnNENmErxStTSUcVLbnhTVc7VWhKTC1GhcloK0KU4za4m3ybgym6iX2Pc2YDe3gsh3lmMg69bslARoEzvESfJBV8oQYIQm4YbYxqRvD5MXpsYVlQPNNatbx6Yzm7nB_VQVri2THIlQKWpJos3R4vfI_WDXfu-prbFjsLYW6ZLpkzJlUno63_QVRhjl4ZlmdIpoAC-z_Ruour95CO5YxwGdr95u9-8nTaf6LcTvfRdg1v_H_jVBFNCyOERlqUwUKX-9dRHH_3g_8b7llw0JASA3TsybieJmfTp4OFFS1sKK0GLP1IZyjo</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Liu, Qiming</creator><creator>Yang, Sumin</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2192-7679</orcidid></search><sort><creationdate>20140101</creationdate><title>Stability and Hopf Bifurcation of an n-Neuron Cohen-Grossberg Neural Network with Time Delays</title><author>Liu, Qiming ; Yang, Sumin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a545t-a19670ea5ca6f654c23ef96d0985283c4fe827292d88ffc64e14b38a5f6430673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Architectural engineering</topic><topic>Behavior</topic><topic>Computer simulation</topic><topic>Delay</topic><topic>Equilibrium</topic><topic>Hopf bifurcation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Neural networks</topic><topic>Stability</topic><topic>Studies</topic><topic>Time delay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qiming</creatorcontrib><creatorcontrib>Yang, Sumin</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qiming</au><au>Yang, Sumin</au><au>Li, Wan-Tong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and Hopf Bifurcation of an n-Neuron Cohen-Grossberg Neural Network with Time Delays</atitle><jtitle>Journal of Applied Mathematics</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>64</spage><epage>73-406</epage><pages>64-73-406</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract>A Cohen-Grossberg neural network with discrete delays is investigated in this paper. Sufficient conditions for the existence of local Hopf bifurcation are obtained by analyzing the distribution of roots of characteristic equation. Moreover, the direction and stability of Hopf bifurcation are obtained by applying the normal form theory and the center manifold theorem. Numerical simulations are given to illustrate the obtained results.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2014/468584</doi><orcidid>https://orcid.org/0000-0002-2192-7679</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-757X
ispartof Journal of Applied Mathematics, 2014-01, Vol.2014 (2014), p.64-73-406
issn 1110-757X
1687-0042
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_08e0a4967e2e4232b53e3eaadd2999d3
source Publicly Available Content (ProQuest); IngentaConnect Journals; Wiley Open Access
subjects Architectural engineering
Behavior
Computer simulation
Delay
Equilibrium
Hopf bifurcation
Mathematical analysis
Mathematical models
Mechanical engineering
Neural networks
Stability
Studies
Time delay
title Stability and Hopf Bifurcation of an n-Neuron Cohen-Grossberg Neural Network with Time Delays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20Hopf%20Bifurcation%20of%20an%20n-Neuron%20Cohen-Grossberg%20Neural%20Network%20with%20Time%20Delays&rft.jtitle=Journal%20of%20Applied%20Mathematics&rft.au=Liu,%20Qiming&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=64&rft.epage=73-406&rft.pages=64-73-406&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2014/468584&rft_dat=%3Cproquest_doaj_%3E3440070291%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a545t-a19670ea5ca6f654c23ef96d0985283c4fe827292d88ffc64e14b38a5f6430673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1564233023&rft_id=info:pmid/&rft_airiti_id=P20160908001_201412_201609190040_201609190040_64_73_406&rfr_iscdi=true