Loading…

PMMA nanocomposites with graphene oxide hybrid nanofillers

Polymethylmethacrylate (PMMA) and nanocomposites containing 0.5 wt.% graphene oxide (GO), graphene oxide-multiwalled carbon nanotubes (NT) or graphene oxide-ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate (IL) (PMMA+GO; PMMA+GO-NT; PMMA+GO-IL) were processed by a single step twin-screw mi...

Full description

Saved in:
Bibliographic Details
Published in:Express polymer letters 2019-10, Vol.13 (10), p.910-922
Main Authors: Sanes, J., Ojados, G., Pamies, R., Bermudez, M. D.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-c0e667e1f0d9112bbd04c1ba51ebe3a0bf11487b1db71359ac96e7e087a14b9f3
cites
container_end_page 922
container_issue 10
container_start_page 910
container_title Express polymer letters
container_volume 13
creator Sanes, J.
Ojados, G.
Pamies, R.
Bermudez, M. D.
description Polymethylmethacrylate (PMMA) and nanocomposites containing 0.5 wt.% graphene oxide (GO), graphene oxide-multiwalled carbon nanotubes (NT) or graphene oxide-ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate (IL) (PMMA+GO; PMMA+GO-NT; PMMA+GO-IL) were processed by a single step twin-screw micro-extrusion. The effect of two extrusion temperature profiles and two specific mechanical energy (SME) values has been studied. Results of Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis show changes in GO composition and morphology, and better dispersion due to interaction with IL. Dynamic mechanical analysis shows that extrusion conditions affect storage modulus of hybrid nanocomposites. Rheological measurements show that the complex viscosity of the nanocomposites is higher than that of PMMA at low shear rates for materials processed under the lower value of SME. A maximum viscosity increase of 62.6% is found for PMMA+GO-NT. The lowest increase found for PMMA+GOIL, is attributed to the better dispersion of the hybrid GO-IL nanofiller.
doi_str_mv 10.3144/expresspolymlett.2019.79
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_08e7c5a6d90e461fbadbf7f9040b4f59</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_08e7c5a6d90e461fbadbf7f9040b4f59</doaj_id><sourcerecordid>2277993805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-c0e667e1f0d9112bbd04c1ba51ebe3a0bf11487b1db71359ac96e7e087a14b9f3</originalsourceid><addsrcrecordid>eNpdkN9LwzAQx4MoOOb-h4LPnbkmbRLfxvDHYEMfFHwLSXvZOrqlJh1u_73dJiLeyx3Hh-8dH0ISoGMGnN_hvg0YY-ubw6bBrhtnFNRYqAsyACFlWoD8uPwzX5NRjGvaF8tZQbMBuX9dLCbJ1mx96Tetj3WHMfmqu1WyDKZd4RYTv68rTFYHG-rqRLq6aTDEG3LlTBNx9NOH5P3x4W36nM5fnmbTyTwtOWVdWlIsCoHgaKUAMmsrykuwJge0yAy1DoBLYaGyAliuTKkKFEilMMCtcmxIZufcypu1bkO9MeGgvan1aeHDUpvQ1WWDmkoUZW6KSlHkBThrKuuEU5RTy12u-qzbc1Yb_OcOY6fXfhe2_fs6y4RQikma95Q8U2XwMQZ0v1eB6qN4_V-8PorXQrFv0xR9DQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277993805</pqid></control><display><type>article</type><title>PMMA nanocomposites with graphene oxide hybrid nanofillers</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><creator>Sanes, J. ; Ojados, G. ; Pamies, R. ; Bermudez, M. D.</creator><creatorcontrib>Sanes, J. ; Ojados, G. ; Pamies, R. ; Bermudez, M. D.</creatorcontrib><description>Polymethylmethacrylate (PMMA) and nanocomposites containing 0.5 wt.% graphene oxide (GO), graphene oxide-multiwalled carbon nanotubes (NT) or graphene oxide-ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate (IL) (PMMA+GO; PMMA+GO-NT; PMMA+GO-IL) were processed by a single step twin-screw micro-extrusion. The effect of two extrusion temperature profiles and two specific mechanical energy (SME) values has been studied. Results of Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis show changes in GO composition and morphology, and better dispersion due to interaction with IL. Dynamic mechanical analysis shows that extrusion conditions affect storage modulus of hybrid nanocomposites. Rheological measurements show that the complex viscosity of the nanocomposites is higher than that of PMMA at low shear rates for materials processed under the lower value of SME. A maximum viscosity increase of 62.6% is found for PMMA+GO-NT. The lowest increase found for PMMA+GOIL, is attributed to the better dispersion of the hybrid GO-IL nanofiller.</description><identifier>ISSN: 1788-618X</identifier><identifier>EISSN: 1788-618X</identifier><identifier>DOI: 10.3144/expresspolymlett.2019.79</identifier><language>eng</language><publisher>Budapest: Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Polymer Engineering</publisher><subject>Carbon ; Composite materials ; Dispersion ; Dynamic mechanical analysis ; dynamic mechanical properties ; Electron microscopy ; Energy ; Energy transmission ; Engineering ; Epoxy resins ; Extrusion ; Graphene ; Graphene oxide ; Ionic liquids ; Ions ; Mechanical properties ; microextrusion ; Microscopy ; Morphology ; Multi wall carbon nanotubes ; Nanocomposites ; Nanomaterials ; Photoelectrons ; Polymers ; Polymethyl methacrylate ; Raman spectroscopy ; Rheological properties ; Rheology ; Science ; Storage modulus ; Temperature profiles ; Viscosity ; X ray analysis ; X ray photoelectron spectroscopy</subject><ispartof>Express polymer letters, 2019-10, Vol.13 (10), p.910-922</ispartof><rights>2019. This work is published under NOCC (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-c0e667e1f0d9112bbd04c1ba51ebe3a0bf11487b1db71359ac96e7e087a14b9f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2277993805/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2277993805?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25728,27898,27899,36986,44563,75093</link.rule.ids></links><search><creatorcontrib>Sanes, J.</creatorcontrib><creatorcontrib>Ojados, G.</creatorcontrib><creatorcontrib>Pamies, R.</creatorcontrib><creatorcontrib>Bermudez, M. D.</creatorcontrib><title>PMMA nanocomposites with graphene oxide hybrid nanofillers</title><title>Express polymer letters</title><description>Polymethylmethacrylate (PMMA) and nanocomposites containing 0.5 wt.% graphene oxide (GO), graphene oxide-multiwalled carbon nanotubes (NT) or graphene oxide-ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate (IL) (PMMA+GO; PMMA+GO-NT; PMMA+GO-IL) were processed by a single step twin-screw micro-extrusion. The effect of two extrusion temperature profiles and two specific mechanical energy (SME) values has been studied. Results of Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis show changes in GO composition and morphology, and better dispersion due to interaction with IL. Dynamic mechanical analysis shows that extrusion conditions affect storage modulus of hybrid nanocomposites. Rheological measurements show that the complex viscosity of the nanocomposites is higher than that of PMMA at low shear rates for materials processed under the lower value of SME. A maximum viscosity increase of 62.6% is found for PMMA+GO-NT. The lowest increase found for PMMA+GOIL, is attributed to the better dispersion of the hybrid GO-IL nanofiller.</description><subject>Carbon</subject><subject>Composite materials</subject><subject>Dispersion</subject><subject>Dynamic mechanical analysis</subject><subject>dynamic mechanical properties</subject><subject>Electron microscopy</subject><subject>Energy</subject><subject>Energy transmission</subject><subject>Engineering</subject><subject>Epoxy resins</subject><subject>Extrusion</subject><subject>Graphene</subject><subject>Graphene oxide</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Mechanical properties</subject><subject>microextrusion</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Photoelectrons</subject><subject>Polymers</subject><subject>Polymethyl methacrylate</subject><subject>Raman spectroscopy</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Science</subject><subject>Storage modulus</subject><subject>Temperature profiles</subject><subject>Viscosity</subject><subject>X ray analysis</subject><subject>X ray photoelectron spectroscopy</subject><issn>1788-618X</issn><issn>1788-618X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkN9LwzAQx4MoOOb-h4LPnbkmbRLfxvDHYEMfFHwLSXvZOrqlJh1u_73dJiLeyx3Hh-8dH0ISoGMGnN_hvg0YY-ubw6bBrhtnFNRYqAsyACFlWoD8uPwzX5NRjGvaF8tZQbMBuX9dLCbJ1mx96Tetj3WHMfmqu1WyDKZd4RYTv68rTFYHG-rqRLq6aTDEG3LlTBNx9NOH5P3x4W36nM5fnmbTyTwtOWVdWlIsCoHgaKUAMmsrykuwJge0yAy1DoBLYaGyAliuTKkKFEilMMCtcmxIZufcypu1bkO9MeGgvan1aeHDUpvQ1WWDmkoUZW6KSlHkBThrKuuEU5RTy12u-qzbc1Yb_OcOY6fXfhe2_fs6y4RQikma95Q8U2XwMQZ0v1eB6qN4_V-8PorXQrFv0xR9DQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Sanes, J.</creator><creator>Ojados, G.</creator><creator>Pamies, R.</creator><creator>Bermudez, M. D.</creator><general>Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Polymer Engineering</general><general>Budapest University of Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20191001</creationdate><title>PMMA nanocomposites with graphene oxide hybrid nanofillers</title><author>Sanes, J. ; Ojados, G. ; Pamies, R. ; Bermudez, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-c0e667e1f0d9112bbd04c1ba51ebe3a0bf11487b1db71359ac96e7e087a14b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Composite materials</topic><topic>Dispersion</topic><topic>Dynamic mechanical analysis</topic><topic>dynamic mechanical properties</topic><topic>Electron microscopy</topic><topic>Energy</topic><topic>Energy transmission</topic><topic>Engineering</topic><topic>Epoxy resins</topic><topic>Extrusion</topic><topic>Graphene</topic><topic>Graphene oxide</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Mechanical properties</topic><topic>microextrusion</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Photoelectrons</topic><topic>Polymers</topic><topic>Polymethyl methacrylate</topic><topic>Raman spectroscopy</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Science</topic><topic>Storage modulus</topic><topic>Temperature profiles</topic><topic>Viscosity</topic><topic>X ray analysis</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanes, J.</creatorcontrib><creatorcontrib>Ojados, G.</creatorcontrib><creatorcontrib>Pamies, R.</creatorcontrib><creatorcontrib>Bermudez, M. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Express polymer letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanes, J.</au><au>Ojados, G.</au><au>Pamies, R.</au><au>Bermudez, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PMMA nanocomposites with graphene oxide hybrid nanofillers</atitle><jtitle>Express polymer letters</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>13</volume><issue>10</issue><spage>910</spage><epage>922</epage><pages>910-922</pages><issn>1788-618X</issn><eissn>1788-618X</eissn><abstract>Polymethylmethacrylate (PMMA) and nanocomposites containing 0.5 wt.% graphene oxide (GO), graphene oxide-multiwalled carbon nanotubes (NT) or graphene oxide-ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate (IL) (PMMA+GO; PMMA+GO-NT; PMMA+GO-IL) were processed by a single step twin-screw micro-extrusion. The effect of two extrusion temperature profiles and two specific mechanical energy (SME) values has been studied. Results of Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis show changes in GO composition and morphology, and better dispersion due to interaction with IL. Dynamic mechanical analysis shows that extrusion conditions affect storage modulus of hybrid nanocomposites. Rheological measurements show that the complex viscosity of the nanocomposites is higher than that of PMMA at low shear rates for materials processed under the lower value of SME. A maximum viscosity increase of 62.6% is found for PMMA+GO-NT. The lowest increase found for PMMA+GOIL, is attributed to the better dispersion of the hybrid GO-IL nanofiller.</abstract><cop>Budapest</cop><pub>Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Polymer Engineering</pub><doi>10.3144/expresspolymlett.2019.79</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1788-618X
ispartof Express polymer letters, 2019-10, Vol.13 (10), p.910-922
issn 1788-618X
1788-618X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_08e7c5a6d90e461fbadbf7f9040b4f59
source Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest)
subjects Carbon
Composite materials
Dispersion
Dynamic mechanical analysis
dynamic mechanical properties
Electron microscopy
Energy
Energy transmission
Engineering
Epoxy resins
Extrusion
Graphene
Graphene oxide
Ionic liquids
Ions
Mechanical properties
microextrusion
Microscopy
Morphology
Multi wall carbon nanotubes
Nanocomposites
Nanomaterials
Photoelectrons
Polymers
Polymethyl methacrylate
Raman spectroscopy
Rheological properties
Rheology
Science
Storage modulus
Temperature profiles
Viscosity
X ray analysis
X ray photoelectron spectroscopy
title PMMA nanocomposites with graphene oxide hybrid nanofillers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T09%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PMMA%20nanocomposites%20with%20graphene%20oxide%20hybrid%20nanofillers&rft.jtitle=Express%20polymer%20letters&rft.au=Sanes,%20J.&rft.date=2019-10-01&rft.volume=13&rft.issue=10&rft.spage=910&rft.epage=922&rft.pages=910-922&rft.issn=1788-618X&rft.eissn=1788-618X&rft_id=info:doi/10.3144/expresspolymlett.2019.79&rft_dat=%3Cproquest_doaj_%3E2277993805%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-c0e667e1f0d9112bbd04c1ba51ebe3a0bf11487b1db71359ac96e7e087a14b9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2277993805&rft_id=info:pmid/&rfr_iscdi=true