Loading…
PMMA nanocomposites with graphene oxide hybrid nanofillers
Polymethylmethacrylate (PMMA) and nanocomposites containing 0.5 wt.% graphene oxide (GO), graphene oxide-multiwalled carbon nanotubes (NT) or graphene oxide-ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate (IL) (PMMA+GO; PMMA+GO-NT; PMMA+GO-IL) were processed by a single step twin-screw mi...
Saved in:
Published in: | Express polymer letters 2019-10, Vol.13 (10), p.910-922 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-c0e667e1f0d9112bbd04c1ba51ebe3a0bf11487b1db71359ac96e7e087a14b9f3 |
---|---|
cites | |
container_end_page | 922 |
container_issue | 10 |
container_start_page | 910 |
container_title | Express polymer letters |
container_volume | 13 |
creator | Sanes, J. Ojados, G. Pamies, R. Bermudez, M. D. |
description | Polymethylmethacrylate (PMMA) and nanocomposites containing 0.5 wt.% graphene oxide (GO), graphene oxide-multiwalled carbon nanotubes (NT) or graphene oxide-ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate (IL) (PMMA+GO; PMMA+GO-NT; PMMA+GO-IL) were processed by a single step twin-screw micro-extrusion. The effect of two extrusion temperature profiles and two specific mechanical energy (SME) values has been studied. Results of Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis show changes in GO composition and morphology, and better dispersion due to interaction with IL. Dynamic mechanical analysis shows that extrusion conditions affect storage modulus of hybrid nanocomposites. Rheological measurements show that the complex viscosity of the nanocomposites is higher than that of PMMA at low shear rates for materials processed under the lower value of SME. A maximum viscosity increase of 62.6% is found for PMMA+GO-NT. The lowest increase found for PMMA+GOIL, is attributed to the better dispersion of the hybrid GO-IL nanofiller. |
doi_str_mv | 10.3144/expresspolymlett.2019.79 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_08e7c5a6d90e461fbadbf7f9040b4f59</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_08e7c5a6d90e461fbadbf7f9040b4f59</doaj_id><sourcerecordid>2277993805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-c0e667e1f0d9112bbd04c1ba51ebe3a0bf11487b1db71359ac96e7e087a14b9f3</originalsourceid><addsrcrecordid>eNpdkN9LwzAQx4MoOOb-h4LPnbkmbRLfxvDHYEMfFHwLSXvZOrqlJh1u_73dJiLeyx3Hh-8dH0ISoGMGnN_hvg0YY-ubw6bBrhtnFNRYqAsyACFlWoD8uPwzX5NRjGvaF8tZQbMBuX9dLCbJ1mx96Tetj3WHMfmqu1WyDKZd4RYTv68rTFYHG-rqRLq6aTDEG3LlTBNx9NOH5P3x4W36nM5fnmbTyTwtOWVdWlIsCoHgaKUAMmsrykuwJge0yAy1DoBLYaGyAliuTKkKFEilMMCtcmxIZufcypu1bkO9MeGgvan1aeHDUpvQ1WWDmkoUZW6KSlHkBThrKuuEU5RTy12u-qzbc1Yb_OcOY6fXfhe2_fs6y4RQikma95Q8U2XwMQZ0v1eB6qN4_V-8PorXQrFv0xR9DQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277993805</pqid></control><display><type>article</type><title>PMMA nanocomposites with graphene oxide hybrid nanofillers</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><creator>Sanes, J. ; Ojados, G. ; Pamies, R. ; Bermudez, M. D.</creator><creatorcontrib>Sanes, J. ; Ojados, G. ; Pamies, R. ; Bermudez, M. D.</creatorcontrib><description>Polymethylmethacrylate (PMMA) and nanocomposites containing 0.5 wt.% graphene oxide (GO), graphene oxide-multiwalled carbon nanotubes (NT) or graphene oxide-ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate (IL) (PMMA+GO; PMMA+GO-NT; PMMA+GO-IL) were processed by a single step twin-screw micro-extrusion. The effect of two extrusion temperature profiles and two specific mechanical energy (SME) values has been studied. Results of Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis show changes in GO composition and morphology, and better dispersion due to interaction with IL. Dynamic mechanical analysis shows that extrusion conditions affect storage modulus of hybrid nanocomposites. Rheological measurements show that the complex viscosity of the nanocomposites is higher than that of PMMA at low shear rates for materials processed under the lower value of SME. A maximum viscosity increase of 62.6% is found for PMMA+GO-NT. The lowest increase found for PMMA+GOIL, is attributed to the better dispersion of the hybrid GO-IL nanofiller.</description><identifier>ISSN: 1788-618X</identifier><identifier>EISSN: 1788-618X</identifier><identifier>DOI: 10.3144/expresspolymlett.2019.79</identifier><language>eng</language><publisher>Budapest: Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Polymer Engineering</publisher><subject>Carbon ; Composite materials ; Dispersion ; Dynamic mechanical analysis ; dynamic mechanical properties ; Electron microscopy ; Energy ; Energy transmission ; Engineering ; Epoxy resins ; Extrusion ; Graphene ; Graphene oxide ; Ionic liquids ; Ions ; Mechanical properties ; microextrusion ; Microscopy ; Morphology ; Multi wall carbon nanotubes ; Nanocomposites ; Nanomaterials ; Photoelectrons ; Polymers ; Polymethyl methacrylate ; Raman spectroscopy ; Rheological properties ; Rheology ; Science ; Storage modulus ; Temperature profiles ; Viscosity ; X ray analysis ; X ray photoelectron spectroscopy</subject><ispartof>Express polymer letters, 2019-10, Vol.13 (10), p.910-922</ispartof><rights>2019. This work is published under NOCC (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-c0e667e1f0d9112bbd04c1ba51ebe3a0bf11487b1db71359ac96e7e087a14b9f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2277993805/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2277993805?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25728,27898,27899,36986,44563,75093</link.rule.ids></links><search><creatorcontrib>Sanes, J.</creatorcontrib><creatorcontrib>Ojados, G.</creatorcontrib><creatorcontrib>Pamies, R.</creatorcontrib><creatorcontrib>Bermudez, M. D.</creatorcontrib><title>PMMA nanocomposites with graphene oxide hybrid nanofillers</title><title>Express polymer letters</title><description>Polymethylmethacrylate (PMMA) and nanocomposites containing 0.5 wt.% graphene oxide (GO), graphene oxide-multiwalled carbon nanotubes (NT) or graphene oxide-ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate (IL) (PMMA+GO; PMMA+GO-NT; PMMA+GO-IL) were processed by a single step twin-screw micro-extrusion. The effect of two extrusion temperature profiles and two specific mechanical energy (SME) values has been studied. Results of Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis show changes in GO composition and morphology, and better dispersion due to interaction with IL. Dynamic mechanical analysis shows that extrusion conditions affect storage modulus of hybrid nanocomposites. Rheological measurements show that the complex viscosity of the nanocomposites is higher than that of PMMA at low shear rates for materials processed under the lower value of SME. A maximum viscosity increase of 62.6% is found for PMMA+GO-NT. The lowest increase found for PMMA+GOIL, is attributed to the better dispersion of the hybrid GO-IL nanofiller.</description><subject>Carbon</subject><subject>Composite materials</subject><subject>Dispersion</subject><subject>Dynamic mechanical analysis</subject><subject>dynamic mechanical properties</subject><subject>Electron microscopy</subject><subject>Energy</subject><subject>Energy transmission</subject><subject>Engineering</subject><subject>Epoxy resins</subject><subject>Extrusion</subject><subject>Graphene</subject><subject>Graphene oxide</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Mechanical properties</subject><subject>microextrusion</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Photoelectrons</subject><subject>Polymers</subject><subject>Polymethyl methacrylate</subject><subject>Raman spectroscopy</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Science</subject><subject>Storage modulus</subject><subject>Temperature profiles</subject><subject>Viscosity</subject><subject>X ray analysis</subject><subject>X ray photoelectron spectroscopy</subject><issn>1788-618X</issn><issn>1788-618X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkN9LwzAQx4MoOOb-h4LPnbkmbRLfxvDHYEMfFHwLSXvZOrqlJh1u_73dJiLeyx3Hh-8dH0ISoGMGnN_hvg0YY-ubw6bBrhtnFNRYqAsyACFlWoD8uPwzX5NRjGvaF8tZQbMBuX9dLCbJ1mx96Tetj3WHMfmqu1WyDKZd4RYTv68rTFYHG-rqRLq6aTDEG3LlTBNx9NOH5P3x4W36nM5fnmbTyTwtOWVdWlIsCoHgaKUAMmsrykuwJge0yAy1DoBLYaGyAliuTKkKFEilMMCtcmxIZufcypu1bkO9MeGgvan1aeHDUpvQ1WWDmkoUZW6KSlHkBThrKuuEU5RTy12u-qzbc1Yb_OcOY6fXfhe2_fs6y4RQikma95Q8U2XwMQZ0v1eB6qN4_V-8PorXQrFv0xR9DQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Sanes, J.</creator><creator>Ojados, G.</creator><creator>Pamies, R.</creator><creator>Bermudez, M. D.</creator><general>Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Polymer Engineering</general><general>Budapest University of Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20191001</creationdate><title>PMMA nanocomposites with graphene oxide hybrid nanofillers</title><author>Sanes, J. ; Ojados, G. ; Pamies, R. ; Bermudez, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-c0e667e1f0d9112bbd04c1ba51ebe3a0bf11487b1db71359ac96e7e087a14b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Composite materials</topic><topic>Dispersion</topic><topic>Dynamic mechanical analysis</topic><topic>dynamic mechanical properties</topic><topic>Electron microscopy</topic><topic>Energy</topic><topic>Energy transmission</topic><topic>Engineering</topic><topic>Epoxy resins</topic><topic>Extrusion</topic><topic>Graphene</topic><topic>Graphene oxide</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Mechanical properties</topic><topic>microextrusion</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Photoelectrons</topic><topic>Polymers</topic><topic>Polymethyl methacrylate</topic><topic>Raman spectroscopy</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Science</topic><topic>Storage modulus</topic><topic>Temperature profiles</topic><topic>Viscosity</topic><topic>X ray analysis</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanes, J.</creatorcontrib><creatorcontrib>Ojados, G.</creatorcontrib><creatorcontrib>Pamies, R.</creatorcontrib><creatorcontrib>Bermudez, M. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Express polymer letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanes, J.</au><au>Ojados, G.</au><au>Pamies, R.</au><au>Bermudez, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PMMA nanocomposites with graphene oxide hybrid nanofillers</atitle><jtitle>Express polymer letters</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>13</volume><issue>10</issue><spage>910</spage><epage>922</epage><pages>910-922</pages><issn>1788-618X</issn><eissn>1788-618X</eissn><abstract>Polymethylmethacrylate (PMMA) and nanocomposites containing 0.5 wt.% graphene oxide (GO), graphene oxide-multiwalled carbon nanotubes (NT) or graphene oxide-ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate (IL) (PMMA+GO; PMMA+GO-NT; PMMA+GO-IL) were processed by a single step twin-screw micro-extrusion. The effect of two extrusion temperature profiles and two specific mechanical energy (SME) values has been studied. Results of Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis show changes in GO composition and morphology, and better dispersion due to interaction with IL. Dynamic mechanical analysis shows that extrusion conditions affect storage modulus of hybrid nanocomposites. Rheological measurements show that the complex viscosity of the nanocomposites is higher than that of PMMA at low shear rates for materials processed under the lower value of SME. A maximum viscosity increase of 62.6% is found for PMMA+GO-NT. The lowest increase found for PMMA+GOIL, is attributed to the better dispersion of the hybrid GO-IL nanofiller.</abstract><cop>Budapest</cop><pub>Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Polymer Engineering</pub><doi>10.3144/expresspolymlett.2019.79</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1788-618X |
ispartof | Express polymer letters, 2019-10, Vol.13 (10), p.910-922 |
issn | 1788-618X 1788-618X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_08e7c5a6d90e461fbadbf7f9040b4f59 |
source | Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest) |
subjects | Carbon Composite materials Dispersion Dynamic mechanical analysis dynamic mechanical properties Electron microscopy Energy Energy transmission Engineering Epoxy resins Extrusion Graphene Graphene oxide Ionic liquids Ions Mechanical properties microextrusion Microscopy Morphology Multi wall carbon nanotubes Nanocomposites Nanomaterials Photoelectrons Polymers Polymethyl methacrylate Raman spectroscopy Rheological properties Rheology Science Storage modulus Temperature profiles Viscosity X ray analysis X ray photoelectron spectroscopy |
title | PMMA nanocomposites with graphene oxide hybrid nanofillers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T09%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PMMA%20nanocomposites%20with%20graphene%20oxide%20hybrid%20nanofillers&rft.jtitle=Express%20polymer%20letters&rft.au=Sanes,%20J.&rft.date=2019-10-01&rft.volume=13&rft.issue=10&rft.spage=910&rft.epage=922&rft.pages=910-922&rft.issn=1788-618X&rft.eissn=1788-618X&rft_id=info:doi/10.3144/expresspolymlett.2019.79&rft_dat=%3Cproquest_doaj_%3E2277993805%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-c0e667e1f0d9112bbd04c1ba51ebe3a0bf11487b1db71359ac96e7e087a14b9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2277993805&rft_id=info:pmid/&rfr_iscdi=true |