Loading…

Cellular metabolism constrains innate immune responses in early human ontogeny

Pathogen immune responses are profoundly attenuated in fetuses and premature infants, yet the mechanisms underlying this developmental immaturity remain unclear. Here we show transcriptomic, metabolic and polysome profiling and find that monocytes isolated from infants born early in gestation displa...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2018-11, Vol.9 (1), p.4822-12, Article 4822
Main Authors: Kan, Bernard, Michalski, Christina, Fu, Helen, Au, Hilda H. T., Lee, Kelsey, Marchant, Elizabeth A., Cheng, Maye F., Anderson-Baucum, Emily, Aharoni-Simon, Michal, Tilley, Peter, Mirmira, Raghavendra G., Ross, Colin J., Luciani, Dan S., Jan, Eric, Lavoie, Pascal M.
Format: Article
Language:English
Subjects:
DNA
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-d5cf91ebd4a279d4f33c7794e69db86a4470fd6fdcd5c56838f2064a330cc4363
cites cdi_FETCH-LOGICAL-c540t-d5cf91ebd4a279d4f33c7794e69db86a4470fd6fdcd5c56838f2064a330cc4363
container_end_page 12
container_issue 1
container_start_page 4822
container_title Nature communications
container_volume 9
creator Kan, Bernard
Michalski, Christina
Fu, Helen
Au, Hilda H. T.
Lee, Kelsey
Marchant, Elizabeth A.
Cheng, Maye F.
Anderson-Baucum, Emily
Aharoni-Simon, Michal
Tilley, Peter
Mirmira, Raghavendra G.
Ross, Colin J.
Luciani, Dan S.
Jan, Eric
Lavoie, Pascal M.
description Pathogen immune responses are profoundly attenuated in fetuses and premature infants, yet the mechanisms underlying this developmental immaturity remain unclear. Here we show transcriptomic, metabolic and polysome profiling and find that monocytes isolated from infants born early in gestation display perturbations in PPAR-γ-regulated metabolic pathways, limited glycolytic capacity and reduced ribosomal activity. These metabolic changes are linked to a lack of translation of most cytokines and of MALT1 signalosome genes essential to respond to the neonatal pathogen Candida . In contrast, they have little impact on house-keeping phagocytosis functions. Transcriptome analyses further indicate a role for mTOR and its putative negative regulator DNA Damage Inducible Transcript 4-Like in regulating these metabolic constraints. Our results provide a molecular basis for the broad susceptibility to multiple pathogens in these infants, and suggest that the fetal immune system is metabolically programmed to avoid energetically costly, dispensable and potentially harmful immune responses during ontogeny. Little is known about developmental set points of immune responses, especially in humans. Here the authors show that the metabolic state of monocytes isolated from prematurely born infants underlies attenuated responsiveness to fungal infection via selective control of protein translation.
doi_str_mv 10.1038/s41467-018-07215-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_08e85291ad4f44b1ab3852a20f070f42</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_08e85291ad4f44b1ab3852a20f070f42</doaj_id><sourcerecordid>2135121239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-d5cf91ebd4a279d4f33c7794e69db86a4470fd6fdcd5c56838f2064a330cc4363</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpH-CAInHhEhjbE8e5IKEVH5UquMDZcpzJ1qvEXuwEaf89TlNKywFfbM-8fmbGb1G8ZPCWgVDvEjKUTQVMVdBwVlftk-KcA7KKNVw8fXA-Ky5TOkBeomUK8XlxJgBRSmTnxdcdjeMymlhONJsujC5NpQ0-zdE4n0rnvZmpdNO0eCojpWPO0RovycTxVN4sk_Fl8HPYkz-9KJ4NZkx0ebdfFD8-ffy--1Jdf_t8tftwXdkaYa762g4to65Hw5u2x0EI2zQtkmz7TkmD2MDQy6G3WVlLJdTAQaIRAqxFIcVFcbVx-2AO-hjdZOJJB-P0bSDEvTZxdnYkDYpUzVtmchnEjplO5LvhMEAugjyz3m-s49JN1FvyefbxEfRxxrsbvQ-_tOQIICED3twBYvi5UJr15JLN_2o8hSVpzkTNOOOizdLX_0gPYYk-f9WqQq5AyLUjvqlsDClFGu6bYaBX9_Xmvs7u61v39Yp-9XCM-yd_vM4CsQlSTvk9xb-1_4P9DXu5ur4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2134280362</pqid></control><display><type>article</type><title>Cellular metabolism constrains innate immune responses in early human ontogeny</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kan, Bernard ; Michalski, Christina ; Fu, Helen ; Au, Hilda H. T. ; Lee, Kelsey ; Marchant, Elizabeth A. ; Cheng, Maye F. ; Anderson-Baucum, Emily ; Aharoni-Simon, Michal ; Tilley, Peter ; Mirmira, Raghavendra G. ; Ross, Colin J. ; Luciani, Dan S. ; Jan, Eric ; Lavoie, Pascal M.</creator><creatorcontrib>Kan, Bernard ; Michalski, Christina ; Fu, Helen ; Au, Hilda H. T. ; Lee, Kelsey ; Marchant, Elizabeth A. ; Cheng, Maye F. ; Anderson-Baucum, Emily ; Aharoni-Simon, Michal ; Tilley, Peter ; Mirmira, Raghavendra G. ; Ross, Colin J. ; Luciani, Dan S. ; Jan, Eric ; Lavoie, Pascal M.</creatorcontrib><description>Pathogen immune responses are profoundly attenuated in fetuses and premature infants, yet the mechanisms underlying this developmental immaturity remain unclear. Here we show transcriptomic, metabolic and polysome profiling and find that monocytes isolated from infants born early in gestation display perturbations in PPAR-γ-regulated metabolic pathways, limited glycolytic capacity and reduced ribosomal activity. These metabolic changes are linked to a lack of translation of most cytokines and of MALT1 signalosome genes essential to respond to the neonatal pathogen Candida . In contrast, they have little impact on house-keeping phagocytosis functions. Transcriptome analyses further indicate a role for mTOR and its putative negative regulator DNA Damage Inducible Transcript 4-Like in regulating these metabolic constraints. Our results provide a molecular basis for the broad susceptibility to multiple pathogens in these infants, and suggest that the fetal immune system is metabolically programmed to avoid energetically costly, dispensable and potentially harmful immune responses during ontogeny. Little is known about developmental set points of immune responses, especially in humans. Here the authors show that the metabolic state of monocytes isolated from prematurely born infants underlies attenuated responsiveness to fungal infection via selective control of protein translation.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-018-07215-9</identifier><identifier>PMID: 30446641</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/21 ; 13/31 ; 38/39 ; 38/61 ; 38/88 ; 631/136 ; 631/250 ; 631/250/262 ; 631/326/193/2542 ; 631/326/421 ; 82/29 ; Adult ; B-Cell CLL-Lymphoma 10 Protein - deficiency ; B-Cell CLL-Lymphoma 10 Protein - genetics ; B-Cell CLL-Lymphoma 10 Protein - immunology ; Candida albicans - immunology ; Candida parapsilosis - immunology ; CARD Signaling Adaptor Proteins - deficiency ; CARD Signaling Adaptor Proteins - genetics ; CARD Signaling Adaptor Proteins - immunology ; Cytokines ; Deoxyribonucleic acid ; DNA ; DNA damage ; Fetuses ; Gene expression ; Gene Expression Regulation, Developmental ; Gestation ; Glycolysis ; Human behavior ; Humanities and Social Sciences ; Humans ; Immune response ; Immune system ; Immunity, Innate ; Infant, Newborn ; Infant, Premature ; Infants ; Innate immunity ; Interleukins - deficiency ; Interleukins - genetics ; Interleukins - immunology ; Lectins, C-Type - deficiency ; Lectins, C-Type - genetics ; Lectins, C-Type - immunology ; Lipopolysaccharides - pharmacology ; Metabolic pathways ; Metabolism ; Microarray Analysis ; Monocytes ; Monocytes - cytology ; Monocytes - drug effects ; Monocytes - immunology ; Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - deficiency ; Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - genetics ; Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - immunology ; multidisciplinary ; Neonates ; Ontogeny ; Pathogens ; Peroxisome proliferator-activated receptors ; Phagocytosis ; PPAR gamma - deficiency ; PPAR gamma - genetics ; PPAR gamma - immunology ; Primary Cell Culture ; Protein Biosynthesis - immunology ; Science ; Science (multidisciplinary) ; TOR protein ; TOR Serine-Threonine Kinases - deficiency ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - immunology ; Transcription ; Transcription Factors - deficiency ; Transcription Factors - genetics ; Transcription Factors - immunology ; Transcriptome - immunology ; Tumor Necrosis Factor-alpha - deficiency ; Tumor Necrosis Factor-alpha - genetics ; Tumor Necrosis Factor-alpha - immunology</subject><ispartof>Nature communications, 2018-11, Vol.9 (1), p.4822-12, Article 4822</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-d5cf91ebd4a279d4f33c7794e69db86a4470fd6fdcd5c56838f2064a330cc4363</citedby><cites>FETCH-LOGICAL-c540t-d5cf91ebd4a279d4f33c7794e69db86a4470fd6fdcd5c56838f2064a330cc4363</cites><orcidid>0000-0002-2137-1092 ; 0000-0003-0523-8467 ; 0000-0003-3188-1739 ; 0000-0003-1289-1851 ; 0000-0002-2205-0362 ; 0000-0001-9093-5325 ; 0000-0003-1476-7037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2134280362/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2134280362?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30446641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kan, Bernard</creatorcontrib><creatorcontrib>Michalski, Christina</creatorcontrib><creatorcontrib>Fu, Helen</creatorcontrib><creatorcontrib>Au, Hilda H. T.</creatorcontrib><creatorcontrib>Lee, Kelsey</creatorcontrib><creatorcontrib>Marchant, Elizabeth A.</creatorcontrib><creatorcontrib>Cheng, Maye F.</creatorcontrib><creatorcontrib>Anderson-Baucum, Emily</creatorcontrib><creatorcontrib>Aharoni-Simon, Michal</creatorcontrib><creatorcontrib>Tilley, Peter</creatorcontrib><creatorcontrib>Mirmira, Raghavendra G.</creatorcontrib><creatorcontrib>Ross, Colin J.</creatorcontrib><creatorcontrib>Luciani, Dan S.</creatorcontrib><creatorcontrib>Jan, Eric</creatorcontrib><creatorcontrib>Lavoie, Pascal M.</creatorcontrib><title>Cellular metabolism constrains innate immune responses in early human ontogeny</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Pathogen immune responses are profoundly attenuated in fetuses and premature infants, yet the mechanisms underlying this developmental immaturity remain unclear. Here we show transcriptomic, metabolic and polysome profiling and find that monocytes isolated from infants born early in gestation display perturbations in PPAR-γ-regulated metabolic pathways, limited glycolytic capacity and reduced ribosomal activity. These metabolic changes are linked to a lack of translation of most cytokines and of MALT1 signalosome genes essential to respond to the neonatal pathogen Candida . In contrast, they have little impact on house-keeping phagocytosis functions. Transcriptome analyses further indicate a role for mTOR and its putative negative regulator DNA Damage Inducible Transcript 4-Like in regulating these metabolic constraints. Our results provide a molecular basis for the broad susceptibility to multiple pathogens in these infants, and suggest that the fetal immune system is metabolically programmed to avoid energetically costly, dispensable and potentially harmful immune responses during ontogeny. Little is known about developmental set points of immune responses, especially in humans. Here the authors show that the metabolic state of monocytes isolated from prematurely born infants underlies attenuated responsiveness to fungal infection via selective control of protein translation.</description><subject>13/1</subject><subject>13/21</subject><subject>13/31</subject><subject>38/39</subject><subject>38/61</subject><subject>38/88</subject><subject>631/136</subject><subject>631/250</subject><subject>631/250/262</subject><subject>631/326/193/2542</subject><subject>631/326/421</subject><subject>82/29</subject><subject>Adult</subject><subject>B-Cell CLL-Lymphoma 10 Protein - deficiency</subject><subject>B-Cell CLL-Lymphoma 10 Protein - genetics</subject><subject>B-Cell CLL-Lymphoma 10 Protein - immunology</subject><subject>Candida albicans - immunology</subject><subject>Candida parapsilosis - immunology</subject><subject>CARD Signaling Adaptor Proteins - deficiency</subject><subject>CARD Signaling Adaptor Proteins - genetics</subject><subject>CARD Signaling Adaptor Proteins - immunology</subject><subject>Cytokines</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Fetuses</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gestation</subject><subject>Glycolysis</subject><subject>Human behavior</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity, Innate</subject><subject>Infant, Newborn</subject><subject>Infant, Premature</subject><subject>Infants</subject><subject>Innate immunity</subject><subject>Interleukins - deficiency</subject><subject>Interleukins - genetics</subject><subject>Interleukins - immunology</subject><subject>Lectins, C-Type - deficiency</subject><subject>Lectins, C-Type - genetics</subject><subject>Lectins, C-Type - immunology</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Microarray Analysis</subject><subject>Monocytes</subject><subject>Monocytes - cytology</subject><subject>Monocytes - drug effects</subject><subject>Monocytes - immunology</subject><subject>Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - deficiency</subject><subject>Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - genetics</subject><subject>Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - immunology</subject><subject>multidisciplinary</subject><subject>Neonates</subject><subject>Ontogeny</subject><subject>Pathogens</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Phagocytosis</subject><subject>PPAR gamma - deficiency</subject><subject>PPAR gamma - genetics</subject><subject>PPAR gamma - immunology</subject><subject>Primary Cell Culture</subject><subject>Protein Biosynthesis - immunology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - deficiency</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - immunology</subject><subject>Transcription</subject><subject>Transcription Factors - deficiency</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - immunology</subject><subject>Transcriptome - immunology</subject><subject>Tumor Necrosis Factor-alpha - deficiency</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><subject>Tumor Necrosis Factor-alpha - immunology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEolXpH-CAInHhEhjbE8e5IKEVH5UquMDZcpzJ1qvEXuwEaf89TlNKywFfbM-8fmbGb1G8ZPCWgVDvEjKUTQVMVdBwVlftk-KcA7KKNVw8fXA-Ky5TOkBeomUK8XlxJgBRSmTnxdcdjeMymlhONJsujC5NpQ0-zdE4n0rnvZmpdNO0eCojpWPO0RovycTxVN4sk_Fl8HPYkz-9KJ4NZkx0ebdfFD8-ffy--1Jdf_t8tftwXdkaYa762g4to65Hw5u2x0EI2zQtkmz7TkmD2MDQy6G3WVlLJdTAQaIRAqxFIcVFcbVx-2AO-hjdZOJJB-P0bSDEvTZxdnYkDYpUzVtmchnEjplO5LvhMEAugjyz3m-s49JN1FvyefbxEfRxxrsbvQ-_tOQIICED3twBYvi5UJr15JLN_2o8hSVpzkTNOOOizdLX_0gPYYk-f9WqQq5AyLUjvqlsDClFGu6bYaBX9_Xmvs7u61v39Yp-9XCM-yd_vM4CsQlSTvk9xb-1_4P9DXu5ur4</recordid><startdate>20181116</startdate><enddate>20181116</enddate><creator>Kan, Bernard</creator><creator>Michalski, Christina</creator><creator>Fu, Helen</creator><creator>Au, Hilda H. T.</creator><creator>Lee, Kelsey</creator><creator>Marchant, Elizabeth A.</creator><creator>Cheng, Maye F.</creator><creator>Anderson-Baucum, Emily</creator><creator>Aharoni-Simon, Michal</creator><creator>Tilley, Peter</creator><creator>Mirmira, Raghavendra G.</creator><creator>Ross, Colin J.</creator><creator>Luciani, Dan S.</creator><creator>Jan, Eric</creator><creator>Lavoie, Pascal M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2137-1092</orcidid><orcidid>https://orcid.org/0000-0003-0523-8467</orcidid><orcidid>https://orcid.org/0000-0003-3188-1739</orcidid><orcidid>https://orcid.org/0000-0003-1289-1851</orcidid><orcidid>https://orcid.org/0000-0002-2205-0362</orcidid><orcidid>https://orcid.org/0000-0001-9093-5325</orcidid><orcidid>https://orcid.org/0000-0003-1476-7037</orcidid></search><sort><creationdate>20181116</creationdate><title>Cellular metabolism constrains innate immune responses in early human ontogeny</title><author>Kan, Bernard ; Michalski, Christina ; Fu, Helen ; Au, Hilda H. T. ; Lee, Kelsey ; Marchant, Elizabeth A. ; Cheng, Maye F. ; Anderson-Baucum, Emily ; Aharoni-Simon, Michal ; Tilley, Peter ; Mirmira, Raghavendra G. ; Ross, Colin J. ; Luciani, Dan S. ; Jan, Eric ; Lavoie, Pascal M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-d5cf91ebd4a279d4f33c7794e69db86a4470fd6fdcd5c56838f2064a330cc4363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/1</topic><topic>13/21</topic><topic>13/31</topic><topic>38/39</topic><topic>38/61</topic><topic>38/88</topic><topic>631/136</topic><topic>631/250</topic><topic>631/250/262</topic><topic>631/326/193/2542</topic><topic>631/326/421</topic><topic>82/29</topic><topic>Adult</topic><topic>B-Cell CLL-Lymphoma 10 Protein - deficiency</topic><topic>B-Cell CLL-Lymphoma 10 Protein - genetics</topic><topic>B-Cell CLL-Lymphoma 10 Protein - immunology</topic><topic>Candida albicans - immunology</topic><topic>Candida parapsilosis - immunology</topic><topic>CARD Signaling Adaptor Proteins - deficiency</topic><topic>CARD Signaling Adaptor Proteins - genetics</topic><topic>CARD Signaling Adaptor Proteins - immunology</topic><topic>Cytokines</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Fetuses</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gestation</topic><topic>Glycolysis</topic><topic>Human behavior</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity, Innate</topic><topic>Infant, Newborn</topic><topic>Infant, Premature</topic><topic>Infants</topic><topic>Innate immunity</topic><topic>Interleukins - deficiency</topic><topic>Interleukins - genetics</topic><topic>Interleukins - immunology</topic><topic>Lectins, C-Type - deficiency</topic><topic>Lectins, C-Type - genetics</topic><topic>Lectins, C-Type - immunology</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Microarray Analysis</topic><topic>Monocytes</topic><topic>Monocytes - cytology</topic><topic>Monocytes - drug effects</topic><topic>Monocytes - immunology</topic><topic>Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - deficiency</topic><topic>Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - genetics</topic><topic>Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - immunology</topic><topic>multidisciplinary</topic><topic>Neonates</topic><topic>Ontogeny</topic><topic>Pathogens</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Phagocytosis</topic><topic>PPAR gamma - deficiency</topic><topic>PPAR gamma - genetics</topic><topic>PPAR gamma - immunology</topic><topic>Primary Cell Culture</topic><topic>Protein Biosynthesis - immunology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - deficiency</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - immunology</topic><topic>Transcription</topic><topic>Transcription Factors - deficiency</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - immunology</topic><topic>Transcriptome - immunology</topic><topic>Tumor Necrosis Factor-alpha - deficiency</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><topic>Tumor Necrosis Factor-alpha - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kan, Bernard</creatorcontrib><creatorcontrib>Michalski, Christina</creatorcontrib><creatorcontrib>Fu, Helen</creatorcontrib><creatorcontrib>Au, Hilda H. T.</creatorcontrib><creatorcontrib>Lee, Kelsey</creatorcontrib><creatorcontrib>Marchant, Elizabeth A.</creatorcontrib><creatorcontrib>Cheng, Maye F.</creatorcontrib><creatorcontrib>Anderson-Baucum, Emily</creatorcontrib><creatorcontrib>Aharoni-Simon, Michal</creatorcontrib><creatorcontrib>Tilley, Peter</creatorcontrib><creatorcontrib>Mirmira, Raghavendra G.</creatorcontrib><creatorcontrib>Ross, Colin J.</creatorcontrib><creatorcontrib>Luciani, Dan S.</creatorcontrib><creatorcontrib>Jan, Eric</creatorcontrib><creatorcontrib>Lavoie, Pascal M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kan, Bernard</au><au>Michalski, Christina</au><au>Fu, Helen</au><au>Au, Hilda H. T.</au><au>Lee, Kelsey</au><au>Marchant, Elizabeth A.</au><au>Cheng, Maye F.</au><au>Anderson-Baucum, Emily</au><au>Aharoni-Simon, Michal</au><au>Tilley, Peter</au><au>Mirmira, Raghavendra G.</au><au>Ross, Colin J.</au><au>Luciani, Dan S.</au><au>Jan, Eric</au><au>Lavoie, Pascal M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular metabolism constrains innate immune responses in early human ontogeny</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2018-11-16</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>4822</spage><epage>12</epage><pages>4822-12</pages><artnum>4822</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Pathogen immune responses are profoundly attenuated in fetuses and premature infants, yet the mechanisms underlying this developmental immaturity remain unclear. Here we show transcriptomic, metabolic and polysome profiling and find that monocytes isolated from infants born early in gestation display perturbations in PPAR-γ-regulated metabolic pathways, limited glycolytic capacity and reduced ribosomal activity. These metabolic changes are linked to a lack of translation of most cytokines and of MALT1 signalosome genes essential to respond to the neonatal pathogen Candida . In contrast, they have little impact on house-keeping phagocytosis functions. Transcriptome analyses further indicate a role for mTOR and its putative negative regulator DNA Damage Inducible Transcript 4-Like in regulating these metabolic constraints. Our results provide a molecular basis for the broad susceptibility to multiple pathogens in these infants, and suggest that the fetal immune system is metabolically programmed to avoid energetically costly, dispensable and potentially harmful immune responses during ontogeny. Little is known about developmental set points of immune responses, especially in humans. Here the authors show that the metabolic state of monocytes isolated from prematurely born infants underlies attenuated responsiveness to fungal infection via selective control of protein translation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30446641</pmid><doi>10.1038/s41467-018-07215-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2137-1092</orcidid><orcidid>https://orcid.org/0000-0003-0523-8467</orcidid><orcidid>https://orcid.org/0000-0003-3188-1739</orcidid><orcidid>https://orcid.org/0000-0003-1289-1851</orcidid><orcidid>https://orcid.org/0000-0002-2205-0362</orcidid><orcidid>https://orcid.org/0000-0001-9093-5325</orcidid><orcidid>https://orcid.org/0000-0003-1476-7037</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2018-11, Vol.9 (1), p.4822-12, Article 4822
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_08e85291ad4f44b1ab3852a20f070f42
source Publicly Available Content Database; Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/1
13/21
13/31
38/39
38/61
38/88
631/136
631/250
631/250/262
631/326/193/2542
631/326/421
82/29
Adult
B-Cell CLL-Lymphoma 10 Protein - deficiency
B-Cell CLL-Lymphoma 10 Protein - genetics
B-Cell CLL-Lymphoma 10 Protein - immunology
Candida albicans - immunology
Candida parapsilosis - immunology
CARD Signaling Adaptor Proteins - deficiency
CARD Signaling Adaptor Proteins - genetics
CARD Signaling Adaptor Proteins - immunology
Cytokines
Deoxyribonucleic acid
DNA
DNA damage
Fetuses
Gene expression
Gene Expression Regulation, Developmental
Gestation
Glycolysis
Human behavior
Humanities and Social Sciences
Humans
Immune response
Immune system
Immunity, Innate
Infant, Newborn
Infant, Premature
Infants
Innate immunity
Interleukins - deficiency
Interleukins - genetics
Interleukins - immunology
Lectins, C-Type - deficiency
Lectins, C-Type - genetics
Lectins, C-Type - immunology
Lipopolysaccharides - pharmacology
Metabolic pathways
Metabolism
Microarray Analysis
Monocytes
Monocytes - cytology
Monocytes - drug effects
Monocytes - immunology
Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - deficiency
Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - genetics
Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - immunology
multidisciplinary
Neonates
Ontogeny
Pathogens
Peroxisome proliferator-activated receptors
Phagocytosis
PPAR gamma - deficiency
PPAR gamma - genetics
PPAR gamma - immunology
Primary Cell Culture
Protein Biosynthesis - immunology
Science
Science (multidisciplinary)
TOR protein
TOR Serine-Threonine Kinases - deficiency
TOR Serine-Threonine Kinases - genetics
TOR Serine-Threonine Kinases - immunology
Transcription
Transcription Factors - deficiency
Transcription Factors - genetics
Transcription Factors - immunology
Transcriptome - immunology
Tumor Necrosis Factor-alpha - deficiency
Tumor Necrosis Factor-alpha - genetics
Tumor Necrosis Factor-alpha - immunology
title Cellular metabolism constrains innate immune responses in early human ontogeny
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A58%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20metabolism%20constrains%20innate%20immune%20responses%20in%20early%20human%20ontogeny&rft.jtitle=Nature%20communications&rft.au=Kan,%20Bernard&rft.date=2018-11-16&rft.volume=9&rft.issue=1&rft.spage=4822&rft.epage=12&rft.pages=4822-12&rft.artnum=4822&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-018-07215-9&rft_dat=%3Cproquest_doaj_%3E2135121239%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-d5cf91ebd4a279d4f33c7794e69db86a4470fd6fdcd5c56838f2064a330cc4363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2134280362&rft_id=info:pmid/30446641&rfr_iscdi=true