Loading…
Cellular metabolism constrains innate immune responses in early human ontogeny
Pathogen immune responses are profoundly attenuated in fetuses and premature infants, yet the mechanisms underlying this developmental immaturity remain unclear. Here we show transcriptomic, metabolic and polysome profiling and find that monocytes isolated from infants born early in gestation displa...
Saved in:
Published in: | Nature communications 2018-11, Vol.9 (1), p.4822-12, Article 4822 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-d5cf91ebd4a279d4f33c7794e69db86a4470fd6fdcd5c56838f2064a330cc4363 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-d5cf91ebd4a279d4f33c7794e69db86a4470fd6fdcd5c56838f2064a330cc4363 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 4822 |
container_title | Nature communications |
container_volume | 9 |
creator | Kan, Bernard Michalski, Christina Fu, Helen Au, Hilda H. T. Lee, Kelsey Marchant, Elizabeth A. Cheng, Maye F. Anderson-Baucum, Emily Aharoni-Simon, Michal Tilley, Peter Mirmira, Raghavendra G. Ross, Colin J. Luciani, Dan S. Jan, Eric Lavoie, Pascal M. |
description | Pathogen immune responses are profoundly attenuated in fetuses and premature infants, yet the mechanisms underlying this developmental immaturity remain unclear. Here we show transcriptomic, metabolic and polysome profiling and find that monocytes isolated from infants born early in gestation display perturbations in PPAR-γ-regulated metabolic pathways, limited glycolytic capacity and reduced ribosomal activity. These metabolic changes are linked to a lack of translation of most cytokines and of MALT1 signalosome genes essential to respond to the neonatal pathogen
Candida
. In contrast, they have little impact on house-keeping phagocytosis functions. Transcriptome analyses further indicate a role for mTOR and its putative negative regulator
DNA Damage Inducible Transcript 4-Like
in regulating these metabolic constraints. Our results provide a molecular basis for the broad susceptibility to multiple pathogens in these infants, and suggest that the fetal immune system is metabolically programmed to avoid energetically costly, dispensable and potentially harmful immune responses during ontogeny.
Little is known about developmental set points of immune responses, especially in humans. Here the authors show that the metabolic state of monocytes isolated from prematurely born infants underlies attenuated responsiveness to fungal infection via selective control of protein translation. |
doi_str_mv | 10.1038/s41467-018-07215-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_08e85291ad4f44b1ab3852a20f070f42</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_08e85291ad4f44b1ab3852a20f070f42</doaj_id><sourcerecordid>2135121239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-d5cf91ebd4a279d4f33c7794e69db86a4470fd6fdcd5c56838f2064a330cc4363</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpH-CAInHhEhjbE8e5IKEVH5UquMDZcpzJ1qvEXuwEaf89TlNKywFfbM-8fmbGb1G8ZPCWgVDvEjKUTQVMVdBwVlftk-KcA7KKNVw8fXA-Ky5TOkBeomUK8XlxJgBRSmTnxdcdjeMymlhONJsujC5NpQ0-zdE4n0rnvZmpdNO0eCojpWPO0RovycTxVN4sk_Fl8HPYkz-9KJ4NZkx0ebdfFD8-ffy--1Jdf_t8tftwXdkaYa762g4to65Hw5u2x0EI2zQtkmz7TkmD2MDQy6G3WVlLJdTAQaIRAqxFIcVFcbVx-2AO-hjdZOJJB-P0bSDEvTZxdnYkDYpUzVtmchnEjplO5LvhMEAugjyz3m-s49JN1FvyefbxEfRxxrsbvQ-_tOQIICED3twBYvi5UJr15JLN_2o8hSVpzkTNOOOizdLX_0gPYYk-f9WqQq5AyLUjvqlsDClFGu6bYaBX9_Xmvs7u61v39Yp-9XCM-yd_vM4CsQlSTvk9xb-1_4P9DXu5ur4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2134280362</pqid></control><display><type>article</type><title>Cellular metabolism constrains innate immune responses in early human ontogeny</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kan, Bernard ; Michalski, Christina ; Fu, Helen ; Au, Hilda H. T. ; Lee, Kelsey ; Marchant, Elizabeth A. ; Cheng, Maye F. ; Anderson-Baucum, Emily ; Aharoni-Simon, Michal ; Tilley, Peter ; Mirmira, Raghavendra G. ; Ross, Colin J. ; Luciani, Dan S. ; Jan, Eric ; Lavoie, Pascal M.</creator><creatorcontrib>Kan, Bernard ; Michalski, Christina ; Fu, Helen ; Au, Hilda H. T. ; Lee, Kelsey ; Marchant, Elizabeth A. ; Cheng, Maye F. ; Anderson-Baucum, Emily ; Aharoni-Simon, Michal ; Tilley, Peter ; Mirmira, Raghavendra G. ; Ross, Colin J. ; Luciani, Dan S. ; Jan, Eric ; Lavoie, Pascal M.</creatorcontrib><description>Pathogen immune responses are profoundly attenuated in fetuses and premature infants, yet the mechanisms underlying this developmental immaturity remain unclear. Here we show transcriptomic, metabolic and polysome profiling and find that monocytes isolated from infants born early in gestation display perturbations in PPAR-γ-regulated metabolic pathways, limited glycolytic capacity and reduced ribosomal activity. These metabolic changes are linked to a lack of translation of most cytokines and of MALT1 signalosome genes essential to respond to the neonatal pathogen
Candida
. In contrast, they have little impact on house-keeping phagocytosis functions. Transcriptome analyses further indicate a role for mTOR and its putative negative regulator
DNA Damage Inducible Transcript 4-Like
in regulating these metabolic constraints. Our results provide a molecular basis for the broad susceptibility to multiple pathogens in these infants, and suggest that the fetal immune system is metabolically programmed to avoid energetically costly, dispensable and potentially harmful immune responses during ontogeny.
Little is known about developmental set points of immune responses, especially in humans. Here the authors show that the metabolic state of monocytes isolated from prematurely born infants underlies attenuated responsiveness to fungal infection via selective control of protein translation.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-018-07215-9</identifier><identifier>PMID: 30446641</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/21 ; 13/31 ; 38/39 ; 38/61 ; 38/88 ; 631/136 ; 631/250 ; 631/250/262 ; 631/326/193/2542 ; 631/326/421 ; 82/29 ; Adult ; B-Cell CLL-Lymphoma 10 Protein - deficiency ; B-Cell CLL-Lymphoma 10 Protein - genetics ; B-Cell CLL-Lymphoma 10 Protein - immunology ; Candida albicans - immunology ; Candida parapsilosis - immunology ; CARD Signaling Adaptor Proteins - deficiency ; CARD Signaling Adaptor Proteins - genetics ; CARD Signaling Adaptor Proteins - immunology ; Cytokines ; Deoxyribonucleic acid ; DNA ; DNA damage ; Fetuses ; Gene expression ; Gene Expression Regulation, Developmental ; Gestation ; Glycolysis ; Human behavior ; Humanities and Social Sciences ; Humans ; Immune response ; Immune system ; Immunity, Innate ; Infant, Newborn ; Infant, Premature ; Infants ; Innate immunity ; Interleukins - deficiency ; Interleukins - genetics ; Interleukins - immunology ; Lectins, C-Type - deficiency ; Lectins, C-Type - genetics ; Lectins, C-Type - immunology ; Lipopolysaccharides - pharmacology ; Metabolic pathways ; Metabolism ; Microarray Analysis ; Monocytes ; Monocytes - cytology ; Monocytes - drug effects ; Monocytes - immunology ; Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - deficiency ; Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - genetics ; Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - immunology ; multidisciplinary ; Neonates ; Ontogeny ; Pathogens ; Peroxisome proliferator-activated receptors ; Phagocytosis ; PPAR gamma - deficiency ; PPAR gamma - genetics ; PPAR gamma - immunology ; Primary Cell Culture ; Protein Biosynthesis - immunology ; Science ; Science (multidisciplinary) ; TOR protein ; TOR Serine-Threonine Kinases - deficiency ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - immunology ; Transcription ; Transcription Factors - deficiency ; Transcription Factors - genetics ; Transcription Factors - immunology ; Transcriptome - immunology ; Tumor Necrosis Factor-alpha - deficiency ; Tumor Necrosis Factor-alpha - genetics ; Tumor Necrosis Factor-alpha - immunology</subject><ispartof>Nature communications, 2018-11, Vol.9 (1), p.4822-12, Article 4822</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-d5cf91ebd4a279d4f33c7794e69db86a4470fd6fdcd5c56838f2064a330cc4363</citedby><cites>FETCH-LOGICAL-c540t-d5cf91ebd4a279d4f33c7794e69db86a4470fd6fdcd5c56838f2064a330cc4363</cites><orcidid>0000-0002-2137-1092 ; 0000-0003-0523-8467 ; 0000-0003-3188-1739 ; 0000-0003-1289-1851 ; 0000-0002-2205-0362 ; 0000-0001-9093-5325 ; 0000-0003-1476-7037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2134280362/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2134280362?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30446641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kan, Bernard</creatorcontrib><creatorcontrib>Michalski, Christina</creatorcontrib><creatorcontrib>Fu, Helen</creatorcontrib><creatorcontrib>Au, Hilda H. T.</creatorcontrib><creatorcontrib>Lee, Kelsey</creatorcontrib><creatorcontrib>Marchant, Elizabeth A.</creatorcontrib><creatorcontrib>Cheng, Maye F.</creatorcontrib><creatorcontrib>Anderson-Baucum, Emily</creatorcontrib><creatorcontrib>Aharoni-Simon, Michal</creatorcontrib><creatorcontrib>Tilley, Peter</creatorcontrib><creatorcontrib>Mirmira, Raghavendra G.</creatorcontrib><creatorcontrib>Ross, Colin J.</creatorcontrib><creatorcontrib>Luciani, Dan S.</creatorcontrib><creatorcontrib>Jan, Eric</creatorcontrib><creatorcontrib>Lavoie, Pascal M.</creatorcontrib><title>Cellular metabolism constrains innate immune responses in early human ontogeny</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Pathogen immune responses are profoundly attenuated in fetuses and premature infants, yet the mechanisms underlying this developmental immaturity remain unclear. Here we show transcriptomic, metabolic and polysome profiling and find that monocytes isolated from infants born early in gestation display perturbations in PPAR-γ-regulated metabolic pathways, limited glycolytic capacity and reduced ribosomal activity. These metabolic changes are linked to a lack of translation of most cytokines and of MALT1 signalosome genes essential to respond to the neonatal pathogen
Candida
. In contrast, they have little impact on house-keeping phagocytosis functions. Transcriptome analyses further indicate a role for mTOR and its putative negative regulator
DNA Damage Inducible Transcript 4-Like
in regulating these metabolic constraints. Our results provide a molecular basis for the broad susceptibility to multiple pathogens in these infants, and suggest that the fetal immune system is metabolically programmed to avoid energetically costly, dispensable and potentially harmful immune responses during ontogeny.
Little is known about developmental set points of immune responses, especially in humans. Here the authors show that the metabolic state of monocytes isolated from prematurely born infants underlies attenuated responsiveness to fungal infection via selective control of protein translation.</description><subject>13/1</subject><subject>13/21</subject><subject>13/31</subject><subject>38/39</subject><subject>38/61</subject><subject>38/88</subject><subject>631/136</subject><subject>631/250</subject><subject>631/250/262</subject><subject>631/326/193/2542</subject><subject>631/326/421</subject><subject>82/29</subject><subject>Adult</subject><subject>B-Cell CLL-Lymphoma 10 Protein - deficiency</subject><subject>B-Cell CLL-Lymphoma 10 Protein - genetics</subject><subject>B-Cell CLL-Lymphoma 10 Protein - immunology</subject><subject>Candida albicans - immunology</subject><subject>Candida parapsilosis - immunology</subject><subject>CARD Signaling Adaptor Proteins - deficiency</subject><subject>CARD Signaling Adaptor Proteins - genetics</subject><subject>CARD Signaling Adaptor Proteins - immunology</subject><subject>Cytokines</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Fetuses</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gestation</subject><subject>Glycolysis</subject><subject>Human behavior</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity, Innate</subject><subject>Infant, Newborn</subject><subject>Infant, Premature</subject><subject>Infants</subject><subject>Innate immunity</subject><subject>Interleukins - deficiency</subject><subject>Interleukins - genetics</subject><subject>Interleukins - immunology</subject><subject>Lectins, C-Type - deficiency</subject><subject>Lectins, C-Type - genetics</subject><subject>Lectins, C-Type - immunology</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Microarray Analysis</subject><subject>Monocytes</subject><subject>Monocytes - cytology</subject><subject>Monocytes - drug effects</subject><subject>Monocytes - immunology</subject><subject>Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - deficiency</subject><subject>Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - genetics</subject><subject>Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - immunology</subject><subject>multidisciplinary</subject><subject>Neonates</subject><subject>Ontogeny</subject><subject>Pathogens</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Phagocytosis</subject><subject>PPAR gamma - deficiency</subject><subject>PPAR gamma - genetics</subject><subject>PPAR gamma - immunology</subject><subject>Primary Cell Culture</subject><subject>Protein Biosynthesis - immunology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - deficiency</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - immunology</subject><subject>Transcription</subject><subject>Transcription Factors - deficiency</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - immunology</subject><subject>Transcriptome - immunology</subject><subject>Tumor Necrosis Factor-alpha - deficiency</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><subject>Tumor Necrosis Factor-alpha - immunology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEolXpH-CAInHhEhjbE8e5IKEVH5UquMDZcpzJ1qvEXuwEaf89TlNKywFfbM-8fmbGb1G8ZPCWgVDvEjKUTQVMVdBwVlftk-KcA7KKNVw8fXA-Ky5TOkBeomUK8XlxJgBRSmTnxdcdjeMymlhONJsujC5NpQ0-zdE4n0rnvZmpdNO0eCojpWPO0RovycTxVN4sk_Fl8HPYkz-9KJ4NZkx0ebdfFD8-ffy--1Jdf_t8tftwXdkaYa762g4to65Hw5u2x0EI2zQtkmz7TkmD2MDQy6G3WVlLJdTAQaIRAqxFIcVFcbVx-2AO-hjdZOJJB-P0bSDEvTZxdnYkDYpUzVtmchnEjplO5LvhMEAugjyz3m-s49JN1FvyefbxEfRxxrsbvQ-_tOQIICED3twBYvi5UJr15JLN_2o8hSVpzkTNOOOizdLX_0gPYYk-f9WqQq5AyLUjvqlsDClFGu6bYaBX9_Xmvs7u61v39Yp-9XCM-yd_vM4CsQlSTvk9xb-1_4P9DXu5ur4</recordid><startdate>20181116</startdate><enddate>20181116</enddate><creator>Kan, Bernard</creator><creator>Michalski, Christina</creator><creator>Fu, Helen</creator><creator>Au, Hilda H. T.</creator><creator>Lee, Kelsey</creator><creator>Marchant, Elizabeth A.</creator><creator>Cheng, Maye F.</creator><creator>Anderson-Baucum, Emily</creator><creator>Aharoni-Simon, Michal</creator><creator>Tilley, Peter</creator><creator>Mirmira, Raghavendra G.</creator><creator>Ross, Colin J.</creator><creator>Luciani, Dan S.</creator><creator>Jan, Eric</creator><creator>Lavoie, Pascal M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2137-1092</orcidid><orcidid>https://orcid.org/0000-0003-0523-8467</orcidid><orcidid>https://orcid.org/0000-0003-3188-1739</orcidid><orcidid>https://orcid.org/0000-0003-1289-1851</orcidid><orcidid>https://orcid.org/0000-0002-2205-0362</orcidid><orcidid>https://orcid.org/0000-0001-9093-5325</orcidid><orcidid>https://orcid.org/0000-0003-1476-7037</orcidid></search><sort><creationdate>20181116</creationdate><title>Cellular metabolism constrains innate immune responses in early human ontogeny</title><author>Kan, Bernard ; Michalski, Christina ; Fu, Helen ; Au, Hilda H. T. ; Lee, Kelsey ; Marchant, Elizabeth A. ; Cheng, Maye F. ; Anderson-Baucum, Emily ; Aharoni-Simon, Michal ; Tilley, Peter ; Mirmira, Raghavendra G. ; Ross, Colin J. ; Luciani, Dan S. ; Jan, Eric ; Lavoie, Pascal M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-d5cf91ebd4a279d4f33c7794e69db86a4470fd6fdcd5c56838f2064a330cc4363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/1</topic><topic>13/21</topic><topic>13/31</topic><topic>38/39</topic><topic>38/61</topic><topic>38/88</topic><topic>631/136</topic><topic>631/250</topic><topic>631/250/262</topic><topic>631/326/193/2542</topic><topic>631/326/421</topic><topic>82/29</topic><topic>Adult</topic><topic>B-Cell CLL-Lymphoma 10 Protein - deficiency</topic><topic>B-Cell CLL-Lymphoma 10 Protein - genetics</topic><topic>B-Cell CLL-Lymphoma 10 Protein - immunology</topic><topic>Candida albicans - immunology</topic><topic>Candida parapsilosis - immunology</topic><topic>CARD Signaling Adaptor Proteins - deficiency</topic><topic>CARD Signaling Adaptor Proteins - genetics</topic><topic>CARD Signaling Adaptor Proteins - immunology</topic><topic>Cytokines</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Fetuses</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gestation</topic><topic>Glycolysis</topic><topic>Human behavior</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity, Innate</topic><topic>Infant, Newborn</topic><topic>Infant, Premature</topic><topic>Infants</topic><topic>Innate immunity</topic><topic>Interleukins - deficiency</topic><topic>Interleukins - genetics</topic><topic>Interleukins - immunology</topic><topic>Lectins, C-Type - deficiency</topic><topic>Lectins, C-Type - genetics</topic><topic>Lectins, C-Type - immunology</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Microarray Analysis</topic><topic>Monocytes</topic><topic>Monocytes - cytology</topic><topic>Monocytes - drug effects</topic><topic>Monocytes - immunology</topic><topic>Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - deficiency</topic><topic>Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - genetics</topic><topic>Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - immunology</topic><topic>multidisciplinary</topic><topic>Neonates</topic><topic>Ontogeny</topic><topic>Pathogens</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Phagocytosis</topic><topic>PPAR gamma - deficiency</topic><topic>PPAR gamma - genetics</topic><topic>PPAR gamma - immunology</topic><topic>Primary Cell Culture</topic><topic>Protein Biosynthesis - immunology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - deficiency</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - immunology</topic><topic>Transcription</topic><topic>Transcription Factors - deficiency</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - immunology</topic><topic>Transcriptome - immunology</topic><topic>Tumor Necrosis Factor-alpha - deficiency</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><topic>Tumor Necrosis Factor-alpha - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kan, Bernard</creatorcontrib><creatorcontrib>Michalski, Christina</creatorcontrib><creatorcontrib>Fu, Helen</creatorcontrib><creatorcontrib>Au, Hilda H. T.</creatorcontrib><creatorcontrib>Lee, Kelsey</creatorcontrib><creatorcontrib>Marchant, Elizabeth A.</creatorcontrib><creatorcontrib>Cheng, Maye F.</creatorcontrib><creatorcontrib>Anderson-Baucum, Emily</creatorcontrib><creatorcontrib>Aharoni-Simon, Michal</creatorcontrib><creatorcontrib>Tilley, Peter</creatorcontrib><creatorcontrib>Mirmira, Raghavendra G.</creatorcontrib><creatorcontrib>Ross, Colin J.</creatorcontrib><creatorcontrib>Luciani, Dan S.</creatorcontrib><creatorcontrib>Jan, Eric</creatorcontrib><creatorcontrib>Lavoie, Pascal M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kan, Bernard</au><au>Michalski, Christina</au><au>Fu, Helen</au><au>Au, Hilda H. T.</au><au>Lee, Kelsey</au><au>Marchant, Elizabeth A.</au><au>Cheng, Maye F.</au><au>Anderson-Baucum, Emily</au><au>Aharoni-Simon, Michal</au><au>Tilley, Peter</au><au>Mirmira, Raghavendra G.</au><au>Ross, Colin J.</au><au>Luciani, Dan S.</au><au>Jan, Eric</au><au>Lavoie, Pascal M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular metabolism constrains innate immune responses in early human ontogeny</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2018-11-16</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>4822</spage><epage>12</epage><pages>4822-12</pages><artnum>4822</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Pathogen immune responses are profoundly attenuated in fetuses and premature infants, yet the mechanisms underlying this developmental immaturity remain unclear. Here we show transcriptomic, metabolic and polysome profiling and find that monocytes isolated from infants born early in gestation display perturbations in PPAR-γ-regulated metabolic pathways, limited glycolytic capacity and reduced ribosomal activity. These metabolic changes are linked to a lack of translation of most cytokines and of MALT1 signalosome genes essential to respond to the neonatal pathogen
Candida
. In contrast, they have little impact on house-keeping phagocytosis functions. Transcriptome analyses further indicate a role for mTOR and its putative negative regulator
DNA Damage Inducible Transcript 4-Like
in regulating these metabolic constraints. Our results provide a molecular basis for the broad susceptibility to multiple pathogens in these infants, and suggest that the fetal immune system is metabolically programmed to avoid energetically costly, dispensable and potentially harmful immune responses during ontogeny.
Little is known about developmental set points of immune responses, especially in humans. Here the authors show that the metabolic state of monocytes isolated from prematurely born infants underlies attenuated responsiveness to fungal infection via selective control of protein translation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30446641</pmid><doi>10.1038/s41467-018-07215-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2137-1092</orcidid><orcidid>https://orcid.org/0000-0003-0523-8467</orcidid><orcidid>https://orcid.org/0000-0003-3188-1739</orcidid><orcidid>https://orcid.org/0000-0003-1289-1851</orcidid><orcidid>https://orcid.org/0000-0002-2205-0362</orcidid><orcidid>https://orcid.org/0000-0001-9093-5325</orcidid><orcidid>https://orcid.org/0000-0003-1476-7037</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2018-11, Vol.9 (1), p.4822-12, Article 4822 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_08e85291ad4f44b1ab3852a20f070f42 |
source | Publicly Available Content Database; Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/1 13/21 13/31 38/39 38/61 38/88 631/136 631/250 631/250/262 631/326/193/2542 631/326/421 82/29 Adult B-Cell CLL-Lymphoma 10 Protein - deficiency B-Cell CLL-Lymphoma 10 Protein - genetics B-Cell CLL-Lymphoma 10 Protein - immunology Candida albicans - immunology Candida parapsilosis - immunology CARD Signaling Adaptor Proteins - deficiency CARD Signaling Adaptor Proteins - genetics CARD Signaling Adaptor Proteins - immunology Cytokines Deoxyribonucleic acid DNA DNA damage Fetuses Gene expression Gene Expression Regulation, Developmental Gestation Glycolysis Human behavior Humanities and Social Sciences Humans Immune response Immune system Immunity, Innate Infant, Newborn Infant, Premature Infants Innate immunity Interleukins - deficiency Interleukins - genetics Interleukins - immunology Lectins, C-Type - deficiency Lectins, C-Type - genetics Lectins, C-Type - immunology Lipopolysaccharides - pharmacology Metabolic pathways Metabolism Microarray Analysis Monocytes Monocytes - cytology Monocytes - drug effects Monocytes - immunology Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - deficiency Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - genetics Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein - immunology multidisciplinary Neonates Ontogeny Pathogens Peroxisome proliferator-activated receptors Phagocytosis PPAR gamma - deficiency PPAR gamma - genetics PPAR gamma - immunology Primary Cell Culture Protein Biosynthesis - immunology Science Science (multidisciplinary) TOR protein TOR Serine-Threonine Kinases - deficiency TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - immunology Transcription Transcription Factors - deficiency Transcription Factors - genetics Transcription Factors - immunology Transcriptome - immunology Tumor Necrosis Factor-alpha - deficiency Tumor Necrosis Factor-alpha - genetics Tumor Necrosis Factor-alpha - immunology |
title | Cellular metabolism constrains innate immune responses in early human ontogeny |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A58%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20metabolism%20constrains%20innate%20immune%20responses%20in%20early%20human%20ontogeny&rft.jtitle=Nature%20communications&rft.au=Kan,%20Bernard&rft.date=2018-11-16&rft.volume=9&rft.issue=1&rft.spage=4822&rft.epage=12&rft.pages=4822-12&rft.artnum=4822&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-018-07215-9&rft_dat=%3Cproquest_doaj_%3E2135121239%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-d5cf91ebd4a279d4f33c7794e69db86a4470fd6fdcd5c56838f2064a330cc4363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2134280362&rft_id=info:pmid/30446641&rfr_iscdi=true |