Loading…

Ballistic Impact Resistance of Bulletproof Vest Inserts Containing Printed Titanium Structures

Finite element modeling of ballistic impact of inserts containing titanium structures were presented in the article. The inserts containing an additional layer made using additive manufacturing technology were analyzed. The layer was created from repetitive elements made without connections (adjacen...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2021-02, Vol.11 (2), p.225
Main Authors: Zochowski, Pawel, Bajkowski, Marcin, Grygoruk, Roman, Magier, Mariusz, Burian, Wojciech, Pyka, Dariusz, Bocian, Miroslaw, Jamroziak, Krzysztof
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-1ae3c3b38805650f7777a396f3088c0ab2ea91c88a5ba50a62f94d01b8ddda4a3
cites cdi_FETCH-LOGICAL-c336t-1ae3c3b38805650f7777a396f3088c0ab2ea91c88a5ba50a62f94d01b8ddda4a3
container_end_page
container_issue 2
container_start_page 225
container_title Metals (Basel )
container_volume 11
creator Zochowski, Pawel
Bajkowski, Marcin
Grygoruk, Roman
Magier, Mariusz
Burian, Wojciech
Pyka, Dariusz
Bocian, Miroslaw
Jamroziak, Krzysztof
description Finite element modeling of ballistic impact of inserts containing titanium structures were presented in the article. The inserts containing an additional layer made using additive manufacturing technology were analyzed. The layer was created from repetitive elements made without connections (adjacent cells were inseparable). Four variants of printed titanium structures were placed between layers of Twaron CT 750 aramid fabric to create ballistic inserts. In order to assess the ballistic resistance of the inserts, numerical simulations of ballistic impact phenomenon were carried out using LS-Dyna software. In the simulations the inserts were placed on a steel box filled with ballistic clay and were fired at with the 9 × 19 mm full metal jacket (FMJ) Parabellum projectile. The main aim of the work was to check the effectiveness of such solutions in soft ballistic protection applications and to select the most effective variant of 3D printed structure. Results of the numerical analysis showed a high potential for 3D printed structures made of titanium alloys to be used for bulletproof vest inserts. In all analyzed cases the projectile was stopped by the armor. In addition, thanks to the cooperation of adjacent cells, the projectile energy density was distributed over a large area, as evidenced by large volumes of hollows in the ballistic clay. The indentations in the ballistic clay obtained in the simulations were significantly lower than the acceptable value for the back face deformation (BFD) parameter required by international body armor standards.
doi_str_mv 10.3390/met11020225
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_08f0b3fdd3c84d449443a3ecf3b1cb51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_08f0b3fdd3c84d449443a3ecf3b1cb51</doaj_id><sourcerecordid>oai_doaj_org_article_08f0b3fdd3c84d449443a3ecf3b1cb51</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-1ae3c3b38805650f7777a396f3088c0ab2ea91c88a5ba50a62f94d01b8ddda4a3</originalsourceid><addsrcrecordid>eNpNkFtLw0AQhYMoWGqf_AP7LtHZzCbdPNriJSAoWn00TPZStuRSdjcP_nujFel5mTMD88E5SXLJ4RqxhJvORM4hgyzLT5JZBss8FUvgp0f-PFmEsINJMiugLGfJ54ra1oXoFKu6PanIXk2YduqVYYNlq7FtTdz7YfIfJkRW9cH4GNh66CO53vVb9uJdH41mGze9ubFjb9GPKo7ehIvkzFIbzOJvzpP3-7vN-jF9en6o1rdPqUIsYsrJoMIGpYS8yMEuJxGWhUWQUgE1maGSKykpbygHKjJbCg28kVprEoTzpDpw9UC7eu9dR_6rHsjVv4fBb2vyU8jW1CAtNGi1RiWFFqIUAgmNsthw1eR8Yl0dWMoPIXhj_3kc6p-m66Om8RvfM3Jb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ballistic Impact Resistance of Bulletproof Vest Inserts Containing Printed Titanium Structures</title><source>Publicly Available Content Database</source><creator>Zochowski, Pawel ; Bajkowski, Marcin ; Grygoruk, Roman ; Magier, Mariusz ; Burian, Wojciech ; Pyka, Dariusz ; Bocian, Miroslaw ; Jamroziak, Krzysztof</creator><creatorcontrib>Zochowski, Pawel ; Bajkowski, Marcin ; Grygoruk, Roman ; Magier, Mariusz ; Burian, Wojciech ; Pyka, Dariusz ; Bocian, Miroslaw ; Jamroziak, Krzysztof</creatorcontrib><description>Finite element modeling of ballistic impact of inserts containing titanium structures were presented in the article. The inserts containing an additional layer made using additive manufacturing technology were analyzed. The layer was created from repetitive elements made without connections (adjacent cells were inseparable). Four variants of printed titanium structures were placed between layers of Twaron CT 750 aramid fabric to create ballistic inserts. In order to assess the ballistic resistance of the inserts, numerical simulations of ballistic impact phenomenon were carried out using LS-Dyna software. In the simulations the inserts were placed on a steel box filled with ballistic clay and were fired at with the 9 × 19 mm full metal jacket (FMJ) Parabellum projectile. The main aim of the work was to check the effectiveness of such solutions in soft ballistic protection applications and to select the most effective variant of 3D printed structure. Results of the numerical analysis showed a high potential for 3D printed structures made of titanium alloys to be used for bulletproof vest inserts. In all analyzed cases the projectile was stopped by the armor. In addition, thanks to the cooperation of adjacent cells, the projectile energy density was distributed over a large area, as evidenced by large volumes of hollows in the ballistic clay. The indentations in the ballistic clay obtained in the simulations were significantly lower than the acceptable value for the back face deformation (BFD) parameter required by international body armor standards.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met11020225</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>additive technologies ; ballistic impact ; ballistic insert ; numerical simulations ; printed titanium structures</subject><ispartof>Metals (Basel ), 2021-02, Vol.11 (2), p.225</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-1ae3c3b38805650f7777a396f3088c0ab2ea91c88a5ba50a62f94d01b8ddda4a3</citedby><cites>FETCH-LOGICAL-c336t-1ae3c3b38805650f7777a396f3088c0ab2ea91c88a5ba50a62f94d01b8ddda4a3</cites><orcidid>0000-0002-4431-9537 ; 0000-0002-2759-2929 ; 0000-0002-9509-354X ; 0000-0002-9887-0578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Zochowski, Pawel</creatorcontrib><creatorcontrib>Bajkowski, Marcin</creatorcontrib><creatorcontrib>Grygoruk, Roman</creatorcontrib><creatorcontrib>Magier, Mariusz</creatorcontrib><creatorcontrib>Burian, Wojciech</creatorcontrib><creatorcontrib>Pyka, Dariusz</creatorcontrib><creatorcontrib>Bocian, Miroslaw</creatorcontrib><creatorcontrib>Jamroziak, Krzysztof</creatorcontrib><title>Ballistic Impact Resistance of Bulletproof Vest Inserts Containing Printed Titanium Structures</title><title>Metals (Basel )</title><description>Finite element modeling of ballistic impact of inserts containing titanium structures were presented in the article. The inserts containing an additional layer made using additive manufacturing technology were analyzed. The layer was created from repetitive elements made without connections (adjacent cells were inseparable). Four variants of printed titanium structures were placed between layers of Twaron CT 750 aramid fabric to create ballistic inserts. In order to assess the ballistic resistance of the inserts, numerical simulations of ballistic impact phenomenon were carried out using LS-Dyna software. In the simulations the inserts were placed on a steel box filled with ballistic clay and were fired at with the 9 × 19 mm full metal jacket (FMJ) Parabellum projectile. The main aim of the work was to check the effectiveness of such solutions in soft ballistic protection applications and to select the most effective variant of 3D printed structure. Results of the numerical analysis showed a high potential for 3D printed structures made of titanium alloys to be used for bulletproof vest inserts. In all analyzed cases the projectile was stopped by the armor. In addition, thanks to the cooperation of adjacent cells, the projectile energy density was distributed over a large area, as evidenced by large volumes of hollows in the ballistic clay. The indentations in the ballistic clay obtained in the simulations were significantly lower than the acceptable value for the back face deformation (BFD) parameter required by international body armor standards.</description><subject>additive technologies</subject><subject>ballistic impact</subject><subject>ballistic insert</subject><subject>numerical simulations</subject><subject>printed titanium structures</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkFtLw0AQhYMoWGqf_AP7LtHZzCbdPNriJSAoWn00TPZStuRSdjcP_nujFel5mTMD88E5SXLJ4RqxhJvORM4hgyzLT5JZBss8FUvgp0f-PFmEsINJMiugLGfJ54ra1oXoFKu6PanIXk2YduqVYYNlq7FtTdz7YfIfJkRW9cH4GNh66CO53vVb9uJdH41mGze9ubFjb9GPKo7ehIvkzFIbzOJvzpP3-7vN-jF9en6o1rdPqUIsYsrJoMIGpYS8yMEuJxGWhUWQUgE1maGSKykpbygHKjJbCg28kVprEoTzpDpw9UC7eu9dR_6rHsjVv4fBb2vyU8jW1CAtNGi1RiWFFqIUAgmNsthw1eR8Yl0dWMoPIXhj_3kc6p-m66Om8RvfM3Jb</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zochowski, Pawel</creator><creator>Bajkowski, Marcin</creator><creator>Grygoruk, Roman</creator><creator>Magier, Mariusz</creator><creator>Burian, Wojciech</creator><creator>Pyka, Dariusz</creator><creator>Bocian, Miroslaw</creator><creator>Jamroziak, Krzysztof</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4431-9537</orcidid><orcidid>https://orcid.org/0000-0002-2759-2929</orcidid><orcidid>https://orcid.org/0000-0002-9509-354X</orcidid><orcidid>https://orcid.org/0000-0002-9887-0578</orcidid></search><sort><creationdate>20210201</creationdate><title>Ballistic Impact Resistance of Bulletproof Vest Inserts Containing Printed Titanium Structures</title><author>Zochowski, Pawel ; Bajkowski, Marcin ; Grygoruk, Roman ; Magier, Mariusz ; Burian, Wojciech ; Pyka, Dariusz ; Bocian, Miroslaw ; Jamroziak, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-1ae3c3b38805650f7777a396f3088c0ab2ea91c88a5ba50a62f94d01b8ddda4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>additive technologies</topic><topic>ballistic impact</topic><topic>ballistic insert</topic><topic>numerical simulations</topic><topic>printed titanium structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zochowski, Pawel</creatorcontrib><creatorcontrib>Bajkowski, Marcin</creatorcontrib><creatorcontrib>Grygoruk, Roman</creatorcontrib><creatorcontrib>Magier, Mariusz</creatorcontrib><creatorcontrib>Burian, Wojciech</creatorcontrib><creatorcontrib>Pyka, Dariusz</creatorcontrib><creatorcontrib>Bocian, Miroslaw</creatorcontrib><creatorcontrib>Jamroziak, Krzysztof</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zochowski, Pawel</au><au>Bajkowski, Marcin</au><au>Grygoruk, Roman</au><au>Magier, Mariusz</au><au>Burian, Wojciech</au><au>Pyka, Dariusz</au><au>Bocian, Miroslaw</au><au>Jamroziak, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ballistic Impact Resistance of Bulletproof Vest Inserts Containing Printed Titanium Structures</atitle><jtitle>Metals (Basel )</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>11</volume><issue>2</issue><spage>225</spage><pages>225-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>Finite element modeling of ballistic impact of inserts containing titanium structures were presented in the article. The inserts containing an additional layer made using additive manufacturing technology were analyzed. The layer was created from repetitive elements made without connections (adjacent cells were inseparable). Four variants of printed titanium structures were placed between layers of Twaron CT 750 aramid fabric to create ballistic inserts. In order to assess the ballistic resistance of the inserts, numerical simulations of ballistic impact phenomenon were carried out using LS-Dyna software. In the simulations the inserts were placed on a steel box filled with ballistic clay and were fired at with the 9 × 19 mm full metal jacket (FMJ) Parabellum projectile. The main aim of the work was to check the effectiveness of such solutions in soft ballistic protection applications and to select the most effective variant of 3D printed structure. Results of the numerical analysis showed a high potential for 3D printed structures made of titanium alloys to be used for bulletproof vest inserts. In all analyzed cases the projectile was stopped by the armor. In addition, thanks to the cooperation of adjacent cells, the projectile energy density was distributed over a large area, as evidenced by large volumes of hollows in the ballistic clay. The indentations in the ballistic clay obtained in the simulations were significantly lower than the acceptable value for the back face deformation (BFD) parameter required by international body armor standards.</abstract><pub>MDPI AG</pub><doi>10.3390/met11020225</doi><orcidid>https://orcid.org/0000-0002-4431-9537</orcidid><orcidid>https://orcid.org/0000-0002-2759-2929</orcidid><orcidid>https://orcid.org/0000-0002-9509-354X</orcidid><orcidid>https://orcid.org/0000-0002-9887-0578</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4701
ispartof Metals (Basel ), 2021-02, Vol.11 (2), p.225
issn 2075-4701
2075-4701
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_08f0b3fdd3c84d449443a3ecf3b1cb51
source Publicly Available Content Database
subjects additive technologies
ballistic impact
ballistic insert
numerical simulations
printed titanium structures
title Ballistic Impact Resistance of Bulletproof Vest Inserts Containing Printed Titanium Structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ballistic%20Impact%20Resistance%20of%20Bulletproof%20Vest%20Inserts%20Containing%20Printed%20Titanium%20Structures&rft.jtitle=Metals%20(Basel%20)&rft.au=Zochowski,%20Pawel&rft.date=2021-02-01&rft.volume=11&rft.issue=2&rft.spage=225&rft.pages=225-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met11020225&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_08f0b3fdd3c84d449443a3ecf3b1cb51%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-1ae3c3b38805650f7777a396f3088c0ab2ea91c88a5ba50a62f94d01b8ddda4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true