Loading…

A System of Four Generalized Sylvester Matrix Equations over the Quaternion Algebra

In this paper, we make use of the simultaneous decomposition of eight quaternion matrices to study the solvability conditions and general solutions to a system of two-sided coupled Sylvester-type quaternion matrix equations AiXiCi+BiXi+1Di=Ωi,i=1,2,3,4. We design an algorithm to compute the general...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2024-08, Vol.12 (15), p.2341
Main Authors: He, Zhuo-Heng, Tian, Jie, Yu, Shao-Wen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c293t-5fedf785f75027380c793e4dc1d57cb5dd8eeadf993930589f2c32d335c419183
container_end_page
container_issue 15
container_start_page 2341
container_title Mathematics (Basel)
container_volume 12
creator He, Zhuo-Heng
Tian, Jie
Yu, Shao-Wen
description In this paper, we make use of the simultaneous decomposition of eight quaternion matrices to study the solvability conditions and general solutions to a system of two-sided coupled Sylvester-type quaternion matrix equations AiXiCi+BiXi+1Di=Ωi,i=1,2,3,4. We design an algorithm to compute the general solution to the system and give a numerical example. Additionally, we consider the application of the system in the encryption and decryption of color images.
doi_str_mv 10.3390/math12152341
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_08f29aec94ad4a1fafa79679865e4955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804514697</galeid><doaj_id>oai_doaj_org_article_08f29aec94ad4a1fafa79679865e4955</doaj_id><sourcerecordid>A804514697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-5fedf785f75027380c793e4dc1d57cb5dd8eeadf993930589f2c32d335c419183</originalsourceid><addsrcrecordid>eNpNkU1LJDEQhptlhRX1tj8gsFdH8zlJHQfxC5RlUc-hTCpjhp6Opntk9dcbHRGTQ4rnrXqpVHXdb8GPlAJ-vMbpQUhhpNLiR7crpbQz24Sf3-Jf3cE4rng7IJTTsNvdLNjNyzjRmpXEzsqmsnMaqGKfXyk2qX-mplZ2jVPN_9np0wanXIaRledGpwdi_xqhOjTIFv2S7ivudzsJ-5EOPt-97u7s9PbkYnb19_zyZHE1CxLUNDOJYrLOJGu4tMrxYEGRjkFEY8O9idERYUwAChQ3DpIMSkalTNAChFN73eXWNxZc-cea11hffMHsP0CpS491yqEnz12SgBRAY9QoEia0MLfg5oY0GNO8_my9Hmt52rQ_-1UbxtDa94pDG5ezGlrW0TZric00D6lMFUO7kdY5lIFSbnzhuDZCz8G2gsNtQahlHCulrzYF9-9r89_Xpt4A5JWJig</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090918749</pqid></control><display><type>article</type><title>A System of Four Generalized Sylvester Matrix Equations over the Quaternion Algebra</title><source>Publicly Available Content Database</source><creator>He, Zhuo-Heng ; Tian, Jie ; Yu, Shao-Wen</creator><creatorcontrib>He, Zhuo-Heng ; Tian, Jie ; Yu, Shao-Wen</creatorcontrib><description>In this paper, we make use of the simultaneous decomposition of eight quaternion matrices to study the solvability conditions and general solutions to a system of two-sided coupled Sylvester-type quaternion matrix equations AiXiCi+BiXi+1Di=Ωi,i=1,2,3,4. We design an algorithm to compute the general solution to the system and give a numerical example. Additionally, we consider the application of the system in the encryption and decryption of color images.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math12152341</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algebra ; Algorithms ; Color imagery ; Control systems ; Decomposition ; Encryption ; general solution ; Image processing ; matrix decomposition ; quaternion matrix equation ; Quaternions ; solvability</subject><ispartof>Mathematics (Basel), 2024-08, Vol.12 (15), p.2341</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-5fedf785f75027380c793e4dc1d57cb5dd8eeadf993930589f2c32d335c419183</cites><orcidid>0000-0002-1508-2972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3090918749/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3090918749?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>He, Zhuo-Heng</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Yu, Shao-Wen</creatorcontrib><title>A System of Four Generalized Sylvester Matrix Equations over the Quaternion Algebra</title><title>Mathematics (Basel)</title><description>In this paper, we make use of the simultaneous decomposition of eight quaternion matrices to study the solvability conditions and general solutions to a system of two-sided coupled Sylvester-type quaternion matrix equations AiXiCi+BiXi+1Di=Ωi,i=1,2,3,4. We design an algorithm to compute the general solution to the system and give a numerical example. Additionally, we consider the application of the system in the encryption and decryption of color images.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Color imagery</subject><subject>Control systems</subject><subject>Decomposition</subject><subject>Encryption</subject><subject>general solution</subject><subject>Image processing</subject><subject>matrix decomposition</subject><subject>quaternion matrix equation</subject><subject>Quaternions</subject><subject>solvability</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1LJDEQhptlhRX1tj8gsFdH8zlJHQfxC5RlUc-hTCpjhp6Opntk9dcbHRGTQ4rnrXqpVHXdb8GPlAJ-vMbpQUhhpNLiR7crpbQz24Sf3-Jf3cE4rng7IJTTsNvdLNjNyzjRmpXEzsqmsnMaqGKfXyk2qX-mplZ2jVPN_9np0wanXIaRledGpwdi_xqhOjTIFv2S7ivudzsJ-5EOPt-97u7s9PbkYnb19_zyZHE1CxLUNDOJYrLOJGu4tMrxYEGRjkFEY8O9idERYUwAChQ3DpIMSkalTNAChFN73eXWNxZc-cea11hffMHsP0CpS491yqEnz12SgBRAY9QoEia0MLfg5oY0GNO8_my9Hmt52rQ_-1UbxtDa94pDG5ezGlrW0TZric00D6lMFUO7kdY5lIFSbnzhuDZCz8G2gsNtQahlHCulrzYF9-9r89_Xpt4A5JWJig</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>He, Zhuo-Heng</creator><creator>Tian, Jie</creator><creator>Yu, Shao-Wen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1508-2972</orcidid></search><sort><creationdate>20240801</creationdate><title>A System of Four Generalized Sylvester Matrix Equations over the Quaternion Algebra</title><author>He, Zhuo-Heng ; Tian, Jie ; Yu, Shao-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-5fedf785f75027380c793e4dc1d57cb5dd8eeadf993930589f2c32d335c419183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Color imagery</topic><topic>Control systems</topic><topic>Decomposition</topic><topic>Encryption</topic><topic>general solution</topic><topic>Image processing</topic><topic>matrix decomposition</topic><topic>quaternion matrix equation</topic><topic>Quaternions</topic><topic>solvability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Zhuo-Heng</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Yu, Shao-Wen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Zhuo-Heng</au><au>Tian, Jie</au><au>Yu, Shao-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A System of Four Generalized Sylvester Matrix Equations over the Quaternion Algebra</atitle><jtitle>Mathematics (Basel)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>12</volume><issue>15</issue><spage>2341</spage><pages>2341-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>In this paper, we make use of the simultaneous decomposition of eight quaternion matrices to study the solvability conditions and general solutions to a system of two-sided coupled Sylvester-type quaternion matrix equations AiXiCi+BiXi+1Di=Ωi,i=1,2,3,4. We design an algorithm to compute the general solution to the system and give a numerical example. Additionally, we consider the application of the system in the encryption and decryption of color images.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math12152341</doi><orcidid>https://orcid.org/0000-0002-1508-2972</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2024-08, Vol.12 (15), p.2341
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_08f29aec94ad4a1fafa79679865e4955
source Publicly Available Content Database
subjects Algebra
Algorithms
Color imagery
Control systems
Decomposition
Encryption
general solution
Image processing
matrix decomposition
quaternion matrix equation
Quaternions
solvability
title A System of Four Generalized Sylvester Matrix Equations over the Quaternion Algebra
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20System%20of%20Four%20Generalized%20Sylvester%20Matrix%20Equations%20over%20the%20Quaternion%20Algebra&rft.jtitle=Mathematics%20(Basel)&rft.au=He,%20Zhuo-Heng&rft.date=2024-08-01&rft.volume=12&rft.issue=15&rft.spage=2341&rft.pages=2341-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math12152341&rft_dat=%3Cgale_doaj_%3EA804514697%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-5fedf785f75027380c793e4dc1d57cb5dd8eeadf993930589f2c32d335c419183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090918749&rft_id=info:pmid/&rft_galeid=A804514697&rfr_iscdi=true