Loading…
A System of Four Generalized Sylvester Matrix Equations over the Quaternion Algebra
In this paper, we make use of the simultaneous decomposition of eight quaternion matrices to study the solvability conditions and general solutions to a system of two-sided coupled Sylvester-type quaternion matrix equations AiXiCi+BiXi+1Di=Ωi,i=1,2,3,4. We design an algorithm to compute the general...
Saved in:
Published in: | Mathematics (Basel) 2024-08, Vol.12 (15), p.2341 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-5fedf785f75027380c793e4dc1d57cb5dd8eeadf993930589f2c32d335c419183 |
container_end_page | |
container_issue | 15 |
container_start_page | 2341 |
container_title | Mathematics (Basel) |
container_volume | 12 |
creator | He, Zhuo-Heng Tian, Jie Yu, Shao-Wen |
description | In this paper, we make use of the simultaneous decomposition of eight quaternion matrices to study the solvability conditions and general solutions to a system of two-sided coupled Sylvester-type quaternion matrix equations AiXiCi+BiXi+1Di=Ωi,i=1,2,3,4. We design an algorithm to compute the general solution to the system and give a numerical example. Additionally, we consider the application of the system in the encryption and decryption of color images. |
doi_str_mv | 10.3390/math12152341 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_08f29aec94ad4a1fafa79679865e4955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804514697</galeid><doaj_id>oai_doaj_org_article_08f29aec94ad4a1fafa79679865e4955</doaj_id><sourcerecordid>A804514697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-5fedf785f75027380c793e4dc1d57cb5dd8eeadf993930589f2c32d335c419183</originalsourceid><addsrcrecordid>eNpNkU1LJDEQhptlhRX1tj8gsFdH8zlJHQfxC5RlUc-hTCpjhp6Opntk9dcbHRGTQ4rnrXqpVHXdb8GPlAJ-vMbpQUhhpNLiR7crpbQz24Sf3-Jf3cE4rng7IJTTsNvdLNjNyzjRmpXEzsqmsnMaqGKfXyk2qX-mplZ2jVPN_9np0wanXIaRledGpwdi_xqhOjTIFv2S7ivudzsJ-5EOPt-97u7s9PbkYnb19_zyZHE1CxLUNDOJYrLOJGu4tMrxYEGRjkFEY8O9idERYUwAChQ3DpIMSkalTNAChFN73eXWNxZc-cea11hffMHsP0CpS491yqEnz12SgBRAY9QoEia0MLfg5oY0GNO8_my9Hmt52rQ_-1UbxtDa94pDG5ezGlrW0TZric00D6lMFUO7kdY5lIFSbnzhuDZCz8G2gsNtQahlHCulrzYF9-9r89_Xpt4A5JWJig</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090918749</pqid></control><display><type>article</type><title>A System of Four Generalized Sylvester Matrix Equations over the Quaternion Algebra</title><source>Publicly Available Content Database</source><creator>He, Zhuo-Heng ; Tian, Jie ; Yu, Shao-Wen</creator><creatorcontrib>He, Zhuo-Heng ; Tian, Jie ; Yu, Shao-Wen</creatorcontrib><description>In this paper, we make use of the simultaneous decomposition of eight quaternion matrices to study the solvability conditions and general solutions to a system of two-sided coupled Sylvester-type quaternion matrix equations AiXiCi+BiXi+1Di=Ωi,i=1,2,3,4. We design an algorithm to compute the general solution to the system and give a numerical example. Additionally, we consider the application of the system in the encryption and decryption of color images.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math12152341</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algebra ; Algorithms ; Color imagery ; Control systems ; Decomposition ; Encryption ; general solution ; Image processing ; matrix decomposition ; quaternion matrix equation ; Quaternions ; solvability</subject><ispartof>Mathematics (Basel), 2024-08, Vol.12 (15), p.2341</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-5fedf785f75027380c793e4dc1d57cb5dd8eeadf993930589f2c32d335c419183</cites><orcidid>0000-0002-1508-2972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3090918749/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3090918749?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>He, Zhuo-Heng</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Yu, Shao-Wen</creatorcontrib><title>A System of Four Generalized Sylvester Matrix Equations over the Quaternion Algebra</title><title>Mathematics (Basel)</title><description>In this paper, we make use of the simultaneous decomposition of eight quaternion matrices to study the solvability conditions and general solutions to a system of two-sided coupled Sylvester-type quaternion matrix equations AiXiCi+BiXi+1Di=Ωi,i=1,2,3,4. We design an algorithm to compute the general solution to the system and give a numerical example. Additionally, we consider the application of the system in the encryption and decryption of color images.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Color imagery</subject><subject>Control systems</subject><subject>Decomposition</subject><subject>Encryption</subject><subject>general solution</subject><subject>Image processing</subject><subject>matrix decomposition</subject><subject>quaternion matrix equation</subject><subject>Quaternions</subject><subject>solvability</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1LJDEQhptlhRX1tj8gsFdH8zlJHQfxC5RlUc-hTCpjhp6Opntk9dcbHRGTQ4rnrXqpVHXdb8GPlAJ-vMbpQUhhpNLiR7crpbQz24Sf3-Jf3cE4rng7IJTTsNvdLNjNyzjRmpXEzsqmsnMaqGKfXyk2qX-mplZ2jVPN_9np0wanXIaRledGpwdi_xqhOjTIFv2S7ivudzsJ-5EOPt-97u7s9PbkYnb19_zyZHE1CxLUNDOJYrLOJGu4tMrxYEGRjkFEY8O9idERYUwAChQ3DpIMSkalTNAChFN73eXWNxZc-cea11hffMHsP0CpS491yqEnz12SgBRAY9QoEia0MLfg5oY0GNO8_my9Hmt52rQ_-1UbxtDa94pDG5ezGlrW0TZric00D6lMFUO7kdY5lIFSbnzhuDZCz8G2gsNtQahlHCulrzYF9-9r89_Xpt4A5JWJig</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>He, Zhuo-Heng</creator><creator>Tian, Jie</creator><creator>Yu, Shao-Wen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1508-2972</orcidid></search><sort><creationdate>20240801</creationdate><title>A System of Four Generalized Sylvester Matrix Equations over the Quaternion Algebra</title><author>He, Zhuo-Heng ; Tian, Jie ; Yu, Shao-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-5fedf785f75027380c793e4dc1d57cb5dd8eeadf993930589f2c32d335c419183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Color imagery</topic><topic>Control systems</topic><topic>Decomposition</topic><topic>Encryption</topic><topic>general solution</topic><topic>Image processing</topic><topic>matrix decomposition</topic><topic>quaternion matrix equation</topic><topic>Quaternions</topic><topic>solvability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Zhuo-Heng</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Yu, Shao-Wen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Zhuo-Heng</au><au>Tian, Jie</au><au>Yu, Shao-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A System of Four Generalized Sylvester Matrix Equations over the Quaternion Algebra</atitle><jtitle>Mathematics (Basel)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>12</volume><issue>15</issue><spage>2341</spage><pages>2341-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>In this paper, we make use of the simultaneous decomposition of eight quaternion matrices to study the solvability conditions and general solutions to a system of two-sided coupled Sylvester-type quaternion matrix equations AiXiCi+BiXi+1Di=Ωi,i=1,2,3,4. We design an algorithm to compute the general solution to the system and give a numerical example. Additionally, we consider the application of the system in the encryption and decryption of color images.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math12152341</doi><orcidid>https://orcid.org/0000-0002-1508-2972</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2024-08, Vol.12 (15), p.2341 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_08f29aec94ad4a1fafa79679865e4955 |
source | Publicly Available Content Database |
subjects | Algebra Algorithms Color imagery Control systems Decomposition Encryption general solution Image processing matrix decomposition quaternion matrix equation Quaternions solvability |
title | A System of Four Generalized Sylvester Matrix Equations over the Quaternion Algebra |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20System%20of%20Four%20Generalized%20Sylvester%20Matrix%20Equations%20over%20the%20Quaternion%20Algebra&rft.jtitle=Mathematics%20(Basel)&rft.au=He,%20Zhuo-Heng&rft.date=2024-08-01&rft.volume=12&rft.issue=15&rft.spage=2341&rft.pages=2341-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math12152341&rft_dat=%3Cgale_doaj_%3EA804514697%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-5fedf785f75027380c793e4dc1d57cb5dd8eeadf993930589f2c32d335c419183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090918749&rft_id=info:pmid/&rft_galeid=A804514697&rfr_iscdi=true |