Loading…

Differential Impact of Subtherapeutic Antibiotics and Ionophores on Intestinal Microbiota of Broilers

Antimicrobial growth promoters (AGPs) are commonly used in the livestock industry at subtherapeutic levels to improve production efficiency, which is achieved mainly through modulation of the intestinal microbiota. However, how different classes of AGPs, particularly ionophores, regulate the gut mic...

Full description

Saved in:
Bibliographic Details
Published in:Microorganisms (Basel) 2019-08, Vol.7 (9), p.282
Main Authors: Robinson, Kelsy, Becker, Sage, Xiao, Yingping, Lyu, Wentao, Yang, Qing, Zhu, Huiling, Yang, Hua, Zhao, Jiangchao, Zhang, Guolong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c604t-16325d74ad2d790f67bd84c3ca426a90511d8503d91eb6738b30e7de060117ec3
cites cdi_FETCH-LOGICAL-c604t-16325d74ad2d790f67bd84c3ca426a90511d8503d91eb6738b30e7de060117ec3
container_end_page
container_issue 9
container_start_page 282
container_title Microorganisms (Basel)
container_volume 7
creator Robinson, Kelsy
Becker, Sage
Xiao, Yingping
Lyu, Wentao
Yang, Qing
Zhu, Huiling
Yang, Hua
Zhao, Jiangchao
Zhang, Guolong
description Antimicrobial growth promoters (AGPs) are commonly used in the livestock industry at subtherapeutic levels to improve production efficiency, which is achieved mainly through modulation of the intestinal microbiota. However, how different classes of AGPs, particularly ionophores, regulate the gut microbiota remains unclear. In this study, male Cobb broiler chickens were supplemented for 14 days with or without one of five commonly used AGPs including three classical antibiotics (bacitracin methylene disalicylate, tylosin, and virginiamycin) and two ionophores (monensin and salinomycin) that differ in antimicrobial spectrum and mechanisms. Deep sequencing of the V3-V4 region of the bacterial 16S rRNA gene revealed that two ionophores drastically reduced a number of rare bacteria resulting in a significant decrease in richness and a concomitant increase in evenness of the cecal microbiota, whereas three antibiotics had no obvious impact. Although each AGP modulated the gut microbiota differently, the closer the antibacterial spectrum of AGPs, the more similarly the microbiota was regulated. Importantly, all AGPs had a strong tendency to enrich butyrate- and lactic acid-producing bacteria, while reducing bile salt hydrolase-producing bacteria, suggestive of enhanced metabolism and utilization of dietary carbohydrates and lipids and improved energy harvest, which may collectively be responsible for the growth-promoting effect of AGPs.
doi_str_mv 10.3390/microorganisms7090282
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_08fdbcc3d2ac4cd3a0e319d2dc855d72</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_08fdbcc3d2ac4cd3a0e319d2dc855d72</doaj_id><sourcerecordid>2400477138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-16325d74ad2d790f67bd84c3ca426a90511d8503d91eb6738b30e7de060117ec3</originalsourceid><addsrcrecordid>eNqFUstu1TAQtRCIVqWfAIrEhs2F8TvZIJXyilTEAlhbjj3p9VUSBztB4u9xuKVqERLeeOQ5c3zmzBDylMJLzht4NQaXYkzXdgp5zBoaYDV7QE4ZaLVjCvTDO_EJOc_5AOU0lNeSPiYnnArBhdSnBN-GvseE0xLsULXjbN1Sxb76snbLHpOdcV2Cqy5KvguxhLmyk6_aOMV5HxPmKk5VOy2YlzAVhk-bsg1pN5Y3KYYBU35CHvV2yHh-c5-Rb-_ffb38uLv6_KG9vLjaOQVi2VHFmfRaWM-8bqBXuvO1cNxZwZRtQFLqawncNxQ7pXndcUDtERRQqtHxM9IeeX20BzOnMNr000QbzO-H4pixqTQxoIG6951z3DPrhPPcAnLalI9dLYsGVrheH7nmtRvRu2JRssM90vuZKezNdfxhlK5BKigEL24IUvy-FoPMGLLDYbATxjUbJgCE1mUm_4dySpXUiukCff4X9BDXVKwvKCnqhkrJNvHyiCrTyDlhf6ubgtlWyPxzhUrds7tN31b9WRj-CwUtx4E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548915522</pqid></control><display><type>article</type><title>Differential Impact of Subtherapeutic Antibiotics and Ionophores on Intestinal Microbiota of Broilers</title><source>Publicly Available Content Database</source><source>PMC (PubMed Central)</source><creator>Robinson, Kelsy ; Becker, Sage ; Xiao, Yingping ; Lyu, Wentao ; Yang, Qing ; Zhu, Huiling ; Yang, Hua ; Zhao, Jiangchao ; Zhang, Guolong</creator><creatorcontrib>Robinson, Kelsy ; Becker, Sage ; Xiao, Yingping ; Lyu, Wentao ; Yang, Qing ; Zhu, Huiling ; Yang, Hua ; Zhao, Jiangchao ; Zhang, Guolong</creatorcontrib><description>Antimicrobial growth promoters (AGPs) are commonly used in the livestock industry at subtherapeutic levels to improve production efficiency, which is achieved mainly through modulation of the intestinal microbiota. However, how different classes of AGPs, particularly ionophores, regulate the gut microbiota remains unclear. In this study, male Cobb broiler chickens were supplemented for 14 days with or without one of five commonly used AGPs including three classical antibiotics (bacitracin methylene disalicylate, tylosin, and virginiamycin) and two ionophores (monensin and salinomycin) that differ in antimicrobial spectrum and mechanisms. Deep sequencing of the V3-V4 region of the bacterial 16S rRNA gene revealed that two ionophores drastically reduced a number of rare bacteria resulting in a significant decrease in richness and a concomitant increase in evenness of the cecal microbiota, whereas three antibiotics had no obvious impact. Although each AGP modulated the gut microbiota differently, the closer the antibacterial spectrum of AGPs, the more similarly the microbiota was regulated. Importantly, all AGPs had a strong tendency to enrich butyrate- and lactic acid-producing bacteria, while reducing bile salt hydrolase-producing bacteria, suggestive of enhanced metabolism and utilization of dietary carbohydrates and lipids and improved energy harvest, which may collectively be responsible for the growth-promoting effect of AGPs.</description><identifier>ISSN: 2076-2607</identifier><identifier>EISSN: 2076-2607</identifier><identifier>DOI: 10.3390/microorganisms7090282</identifier><identifier>PMID: 31443457</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; antibacterial properties ; Antibiotics ; Antiinfectives and antibacterials ; antimicrobial growth promoters ; Bacitracin ; Bacteria ; bile salts ; broiler chickens ; butyrates ; Carbohydrates ; Cecum ; chickens ; Diet ; dietary carbohydrate ; Digestive system ; energy ; Energy harvesting ; Feeds ; Gastrointestinal tract ; genes ; Gram-positive bacteria ; growth promotion ; high-throughput nucleotide sequencing ; Hydrolase ; Intestinal microflora ; intestinal microorganisms ; Intestine ; Ionophores ; Lactic acid ; Lipid metabolism ; Lipids ; Livestock ; livestock and meat industry ; Livestock industry ; males ; metabolism ; Microbiota ; Monensin ; Poultry ; ribosomal RNA ; rRNA 16S ; Salinomycin ; Tylosin ; Virginiamycin</subject><ispartof>Microorganisms (Basel), 2019-08, Vol.7 (9), p.282</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-16325d74ad2d790f67bd84c3ca426a90511d8503d91eb6738b30e7de060117ec3</citedby><cites>FETCH-LOGICAL-c604t-16325d74ad2d790f67bd84c3ca426a90511d8503d91eb6738b30e7de060117ec3</cites><orcidid>0000-0003-4781-5816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548915522/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548915522?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25733,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31443457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robinson, Kelsy</creatorcontrib><creatorcontrib>Becker, Sage</creatorcontrib><creatorcontrib>Xiao, Yingping</creatorcontrib><creatorcontrib>Lyu, Wentao</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Zhu, Huiling</creatorcontrib><creatorcontrib>Yang, Hua</creatorcontrib><creatorcontrib>Zhao, Jiangchao</creatorcontrib><creatorcontrib>Zhang, Guolong</creatorcontrib><title>Differential Impact of Subtherapeutic Antibiotics and Ionophores on Intestinal Microbiota of Broilers</title><title>Microorganisms (Basel)</title><addtitle>Microorganisms</addtitle><description>Antimicrobial growth promoters (AGPs) are commonly used in the livestock industry at subtherapeutic levels to improve production efficiency, which is achieved mainly through modulation of the intestinal microbiota. However, how different classes of AGPs, particularly ionophores, regulate the gut microbiota remains unclear. In this study, male Cobb broiler chickens were supplemented for 14 days with or without one of five commonly used AGPs including three classical antibiotics (bacitracin methylene disalicylate, tylosin, and virginiamycin) and two ionophores (monensin and salinomycin) that differ in antimicrobial spectrum and mechanisms. Deep sequencing of the V3-V4 region of the bacterial 16S rRNA gene revealed that two ionophores drastically reduced a number of rare bacteria resulting in a significant decrease in richness and a concomitant increase in evenness of the cecal microbiota, whereas three antibiotics had no obvious impact. Although each AGP modulated the gut microbiota differently, the closer the antibacterial spectrum of AGPs, the more similarly the microbiota was regulated. Importantly, all AGPs had a strong tendency to enrich butyrate- and lactic acid-producing bacteria, while reducing bile salt hydrolase-producing bacteria, suggestive of enhanced metabolism and utilization of dietary carbohydrates and lipids and improved energy harvest, which may collectively be responsible for the growth-promoting effect of AGPs.</description><subject>Animals</subject><subject>antibacterial properties</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>antimicrobial growth promoters</subject><subject>Bacitracin</subject><subject>Bacteria</subject><subject>bile salts</subject><subject>broiler chickens</subject><subject>butyrates</subject><subject>Carbohydrates</subject><subject>Cecum</subject><subject>chickens</subject><subject>Diet</subject><subject>dietary carbohydrate</subject><subject>Digestive system</subject><subject>energy</subject><subject>Energy harvesting</subject><subject>Feeds</subject><subject>Gastrointestinal tract</subject><subject>genes</subject><subject>Gram-positive bacteria</subject><subject>growth promotion</subject><subject>high-throughput nucleotide sequencing</subject><subject>Hydrolase</subject><subject>Intestinal microflora</subject><subject>intestinal microorganisms</subject><subject>Intestine</subject><subject>Ionophores</subject><subject>Lactic acid</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Livestock</subject><subject>livestock and meat industry</subject><subject>Livestock industry</subject><subject>males</subject><subject>metabolism</subject><subject>Microbiota</subject><subject>Monensin</subject><subject>Poultry</subject><subject>ribosomal RNA</subject><subject>rRNA 16S</subject><subject>Salinomycin</subject><subject>Tylosin</subject><subject>Virginiamycin</subject><issn>2076-2607</issn><issn>2076-2607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFUstu1TAQtRCIVqWfAIrEhs2F8TvZIJXyilTEAlhbjj3p9VUSBztB4u9xuKVqERLeeOQ5c3zmzBDylMJLzht4NQaXYkzXdgp5zBoaYDV7QE4ZaLVjCvTDO_EJOc_5AOU0lNeSPiYnnArBhdSnBN-GvseE0xLsULXjbN1Sxb76snbLHpOdcV2Cqy5KvguxhLmyk6_aOMV5HxPmKk5VOy2YlzAVhk-bsg1pN5Y3KYYBU35CHvV2yHh-c5-Rb-_ffb38uLv6_KG9vLjaOQVi2VHFmfRaWM-8bqBXuvO1cNxZwZRtQFLqawncNxQ7pXndcUDtERRQqtHxM9IeeX20BzOnMNr000QbzO-H4pixqTQxoIG6951z3DPrhPPcAnLalI9dLYsGVrheH7nmtRvRu2JRssM90vuZKezNdfxhlK5BKigEL24IUvy-FoPMGLLDYbATxjUbJgCE1mUm_4dySpXUiukCff4X9BDXVKwvKCnqhkrJNvHyiCrTyDlhf6ubgtlWyPxzhUrds7tN31b9WRj-CwUtx4E</recordid><startdate>20190822</startdate><enddate>20190822</enddate><creator>Robinson, Kelsy</creator><creator>Becker, Sage</creator><creator>Xiao, Yingping</creator><creator>Lyu, Wentao</creator><creator>Yang, Qing</creator><creator>Zhu, Huiling</creator><creator>Yang, Hua</creator><creator>Zhao, Jiangchao</creator><creator>Zhang, Guolong</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4781-5816</orcidid></search><sort><creationdate>20190822</creationdate><title>Differential Impact of Subtherapeutic Antibiotics and Ionophores on Intestinal Microbiota of Broilers</title><author>Robinson, Kelsy ; Becker, Sage ; Xiao, Yingping ; Lyu, Wentao ; Yang, Qing ; Zhu, Huiling ; Yang, Hua ; Zhao, Jiangchao ; Zhang, Guolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-16325d74ad2d790f67bd84c3ca426a90511d8503d91eb6738b30e7de060117ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>antibacterial properties</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>antimicrobial growth promoters</topic><topic>Bacitracin</topic><topic>Bacteria</topic><topic>bile salts</topic><topic>broiler chickens</topic><topic>butyrates</topic><topic>Carbohydrates</topic><topic>Cecum</topic><topic>chickens</topic><topic>Diet</topic><topic>dietary carbohydrate</topic><topic>Digestive system</topic><topic>energy</topic><topic>Energy harvesting</topic><topic>Feeds</topic><topic>Gastrointestinal tract</topic><topic>genes</topic><topic>Gram-positive bacteria</topic><topic>growth promotion</topic><topic>high-throughput nucleotide sequencing</topic><topic>Hydrolase</topic><topic>Intestinal microflora</topic><topic>intestinal microorganisms</topic><topic>Intestine</topic><topic>Ionophores</topic><topic>Lactic acid</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Livestock</topic><topic>livestock and meat industry</topic><topic>Livestock industry</topic><topic>males</topic><topic>metabolism</topic><topic>Microbiota</topic><topic>Monensin</topic><topic>Poultry</topic><topic>ribosomal RNA</topic><topic>rRNA 16S</topic><topic>Salinomycin</topic><topic>Tylosin</topic><topic>Virginiamycin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Kelsy</creatorcontrib><creatorcontrib>Becker, Sage</creatorcontrib><creatorcontrib>Xiao, Yingping</creatorcontrib><creatorcontrib>Lyu, Wentao</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Zhu, Huiling</creatorcontrib><creatorcontrib>Yang, Hua</creatorcontrib><creatorcontrib>Zhao, Jiangchao</creatorcontrib><creatorcontrib>Zhang, Guolong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Microorganisms (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, Kelsy</au><au>Becker, Sage</au><au>Xiao, Yingping</au><au>Lyu, Wentao</au><au>Yang, Qing</au><au>Zhu, Huiling</au><au>Yang, Hua</au><au>Zhao, Jiangchao</au><au>Zhang, Guolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential Impact of Subtherapeutic Antibiotics and Ionophores on Intestinal Microbiota of Broilers</atitle><jtitle>Microorganisms (Basel)</jtitle><addtitle>Microorganisms</addtitle><date>2019-08-22</date><risdate>2019</risdate><volume>7</volume><issue>9</issue><spage>282</spage><pages>282-</pages><issn>2076-2607</issn><eissn>2076-2607</eissn><abstract>Antimicrobial growth promoters (AGPs) are commonly used in the livestock industry at subtherapeutic levels to improve production efficiency, which is achieved mainly through modulation of the intestinal microbiota. However, how different classes of AGPs, particularly ionophores, regulate the gut microbiota remains unclear. In this study, male Cobb broiler chickens were supplemented for 14 days with or without one of five commonly used AGPs including three classical antibiotics (bacitracin methylene disalicylate, tylosin, and virginiamycin) and two ionophores (monensin and salinomycin) that differ in antimicrobial spectrum and mechanisms. Deep sequencing of the V3-V4 region of the bacterial 16S rRNA gene revealed that two ionophores drastically reduced a number of rare bacteria resulting in a significant decrease in richness and a concomitant increase in evenness of the cecal microbiota, whereas three antibiotics had no obvious impact. Although each AGP modulated the gut microbiota differently, the closer the antibacterial spectrum of AGPs, the more similarly the microbiota was regulated. Importantly, all AGPs had a strong tendency to enrich butyrate- and lactic acid-producing bacteria, while reducing bile salt hydrolase-producing bacteria, suggestive of enhanced metabolism and utilization of dietary carbohydrates and lipids and improved energy harvest, which may collectively be responsible for the growth-promoting effect of AGPs.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31443457</pmid><doi>10.3390/microorganisms7090282</doi><orcidid>https://orcid.org/0000-0003-4781-5816</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-2607
ispartof Microorganisms (Basel), 2019-08, Vol.7 (9), p.282
issn 2076-2607
2076-2607
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_08fdbcc3d2ac4cd3a0e319d2dc855d72
source Publicly Available Content Database; PMC (PubMed Central)
subjects Animals
antibacterial properties
Antibiotics
Antiinfectives and antibacterials
antimicrobial growth promoters
Bacitracin
Bacteria
bile salts
broiler chickens
butyrates
Carbohydrates
Cecum
chickens
Diet
dietary carbohydrate
Digestive system
energy
Energy harvesting
Feeds
Gastrointestinal tract
genes
Gram-positive bacteria
growth promotion
high-throughput nucleotide sequencing
Hydrolase
Intestinal microflora
intestinal microorganisms
Intestine
Ionophores
Lactic acid
Lipid metabolism
Lipids
Livestock
livestock and meat industry
Livestock industry
males
metabolism
Microbiota
Monensin
Poultry
ribosomal RNA
rRNA 16S
Salinomycin
Tylosin
Virginiamycin
title Differential Impact of Subtherapeutic Antibiotics and Ionophores on Intestinal Microbiota of Broilers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20Impact%20of%20Subtherapeutic%20Antibiotics%20and%20Ionophores%20on%20Intestinal%20Microbiota%20of%20Broilers&rft.jtitle=Microorganisms%20(Basel)&rft.au=Robinson,%20Kelsy&rft.date=2019-08-22&rft.volume=7&rft.issue=9&rft.spage=282&rft.pages=282-&rft.issn=2076-2607&rft.eissn=2076-2607&rft_id=info:doi/10.3390/microorganisms7090282&rft_dat=%3Cproquest_doaj_%3E2400477138%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c604t-16325d74ad2d790f67bd84c3ca426a90511d8503d91eb6738b30e7de060117ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548915522&rft_id=info:pmid/31443457&rfr_iscdi=true