Loading…
Optimization of dual transesterification of jatropha seed oil to biolubricant using hybridized response surface methodology (RSM) and adaptive neuro fuzzy inference system (ANFIS)-genetic algorithm (GA)
The over-reliance of the industrial and automobile sectors on petroleum-based lubricants, the feedstocks of which pose environmental challenges, has generated the need for sustainable alternatives in order to promote economic development and a sustainable green environment. The study investigated th...
Saved in:
Published in: | Sustainable Chemistry for the Environment 2023-12, Vol.4, p.100050, Article 100050 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2250-3b6b497cfcf8bec7596ac69ebaa81e94b7c0525eab2dcc78fb8530ae659a957a3 |
container_end_page | |
container_issue | |
container_start_page | 100050 |
container_title | Sustainable Chemistry for the Environment |
container_volume | 4 |
creator | Ude, Callistus N. Igwilo, Christopher N. Nwosu-Obieogu, Kenechi Nnaji, Patrick C. Oguanobi, Collins N. Amulu, Ndidi F. Eze, Cordelia Nneka Omenihu, Uchenna C. |
description | The over-reliance of the industrial and automobile sectors on petroleum-based lubricants, the feedstocks of which pose environmental challenges, has generated the need for sustainable alternatives in order to promote economic development and a sustainable green environment. The study investigated the optimization of process variables for the dual transesterification of jatropha seed oil into a biolubricant using a hybridized response surface methodology-genetic algorithm (RSM-GA) and an adaptive neuro-fuzzy inference system-genetic algorithm (ANFIS-GA). The seed oil was extracted using a Soxhlet extractor and characterized for its physicochemical properties. The catalyst for the reaction was synthesized by the acid modification of clay. The experimental design was created using Design Expert, and process parameters were optimized using RSM-GA and ANFIS-GA. The yield of oil was 56%, and its properties did not impede the catalyst from transesterification without pretreatment. The modified clay effectively converted the jatropha seed oil into a biolubricant. The ANFIS-GA model attained the highest yields (92.36%) under the optimal parameters of 3 h reaction time, 120 °C reaction temperature, 3% wt catalyst dosage, 5:1 TMP/JSOME molar ratio, and 300 rpm agitation speed. Therefore, the incorporation of ANFIS and RSM with GA was more efficient in optimizing and predicting the biolubricant yield. |
doi_str_mv | 10.1016/j.scenv.2023.100050 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_090eed1b68b44b8280e083da8dd72d5a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_090eed1b68b44b8280e083da8dd72d5a</doaj_id><sourcerecordid>oai_doaj_org_article_090eed1b68b44b8280e083da8dd72d5a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2250-3b6b497cfcf8bec7596ac69ebaa81e94b7c0525eab2dcc78fb8530ae659a957a3</originalsourceid><addsrcrecordid>eNpNkcFq3DAQhk1poSHNE_SiY_bgrSxbtnRcQpMupA007VmMpLFXxistkh3YfcQ-VbXZEnrSaOafj5_5i-JzRdcVrdov4zoZ9C9rRlmdO5Ry-q64YrKRpagle_9f_bG4SWnMEiZl1fLqqvjzdJjd3p1gdsGT0BO7wETmCD5hmjG63pm32QhzDIcdkIRoSXBZGIh2YVp0zDI_kyU5P5DdMf-tO2VRxHQImUXSEnswSPY474INUxiO5Pbn8_cVAW8JWMg-XpB4XGIg_XI6HYnzPUb0eSkds5c9ud38uN8-r8oBPc7OEJiGEN28y5OHzepT8aGHKeHNv_e6-H3_9dfdt_Lx6WF7t3ksDWOclrVudSM705teaDQdly2YVqIGEBXKRneGcsYRNLPGdKLXgtcUsOUSJO-gvi62F64NMKpDdHuIRxXAqddGiIOCmO1NqKik-VKVboVuGi2YoEhFbUFY2zHLz6z6wjIxpBSxf-NVVJ3TVaN6TVed01WXdOu_CwSfow</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of dual transesterification of jatropha seed oil to biolubricant using hybridized response surface methodology (RSM) and adaptive neuro fuzzy inference system (ANFIS)-genetic algorithm (GA)</title><source>ScienceDirect Journals</source><creator>Ude, Callistus N. ; Igwilo, Christopher N. ; Nwosu-Obieogu, Kenechi ; Nnaji, Patrick C. ; Oguanobi, Collins N. ; Amulu, Ndidi F. ; Eze, Cordelia Nneka ; Omenihu, Uchenna C.</creator><creatorcontrib>Ude, Callistus N. ; Igwilo, Christopher N. ; Nwosu-Obieogu, Kenechi ; Nnaji, Patrick C. ; Oguanobi, Collins N. ; Amulu, Ndidi F. ; Eze, Cordelia Nneka ; Omenihu, Uchenna C.</creatorcontrib><description>The over-reliance of the industrial and automobile sectors on petroleum-based lubricants, the feedstocks of which pose environmental challenges, has generated the need for sustainable alternatives in order to promote economic development and a sustainable green environment. The study investigated the optimization of process variables for the dual transesterification of jatropha seed oil into a biolubricant using a hybridized response surface methodology-genetic algorithm (RSM-GA) and an adaptive neuro-fuzzy inference system-genetic algorithm (ANFIS-GA). The seed oil was extracted using a Soxhlet extractor and characterized for its physicochemical properties. The catalyst for the reaction was synthesized by the acid modification of clay. The experimental design was created using Design Expert, and process parameters were optimized using RSM-GA and ANFIS-GA. The yield of oil was 56%, and its properties did not impede the catalyst from transesterification without pretreatment. The modified clay effectively converted the jatropha seed oil into a biolubricant. The ANFIS-GA model attained the highest yields (92.36%) under the optimal parameters of 3 h reaction time, 120 °C reaction temperature, 3% wt catalyst dosage, 5:1 TMP/JSOME molar ratio, and 300 rpm agitation speed. Therefore, the incorporation of ANFIS and RSM with GA was more efficient in optimizing and predicting the biolubricant yield.</description><identifier>ISSN: 2949-8392</identifier><identifier>EISSN: 2949-8392</identifier><identifier>DOI: 10.1016/j.scenv.2023.100050</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Adaptive neuro fuzzy inference system ; Genetic algorithm ; Jatropha seed oil ; Response surface methodology ; Transesterification</subject><ispartof>Sustainable Chemistry for the Environment, 2023-12, Vol.4, p.100050, Article 100050</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2250-3b6b497cfcf8bec7596ac69ebaa81e94b7c0525eab2dcc78fb8530ae659a957a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ude, Callistus N.</creatorcontrib><creatorcontrib>Igwilo, Christopher N.</creatorcontrib><creatorcontrib>Nwosu-Obieogu, Kenechi</creatorcontrib><creatorcontrib>Nnaji, Patrick C.</creatorcontrib><creatorcontrib>Oguanobi, Collins N.</creatorcontrib><creatorcontrib>Amulu, Ndidi F.</creatorcontrib><creatorcontrib>Eze, Cordelia Nneka</creatorcontrib><creatorcontrib>Omenihu, Uchenna C.</creatorcontrib><title>Optimization of dual transesterification of jatropha seed oil to biolubricant using hybridized response surface methodology (RSM) and adaptive neuro fuzzy inference system (ANFIS)-genetic algorithm (GA)</title><title>Sustainable Chemistry for the Environment</title><description>The over-reliance of the industrial and automobile sectors on petroleum-based lubricants, the feedstocks of which pose environmental challenges, has generated the need for sustainable alternatives in order to promote economic development and a sustainable green environment. The study investigated the optimization of process variables for the dual transesterification of jatropha seed oil into a biolubricant using a hybridized response surface methodology-genetic algorithm (RSM-GA) and an adaptive neuro-fuzzy inference system-genetic algorithm (ANFIS-GA). The seed oil was extracted using a Soxhlet extractor and characterized for its physicochemical properties. The catalyst for the reaction was synthesized by the acid modification of clay. The experimental design was created using Design Expert, and process parameters were optimized using RSM-GA and ANFIS-GA. The yield of oil was 56%, and its properties did not impede the catalyst from transesterification without pretreatment. The modified clay effectively converted the jatropha seed oil into a biolubricant. The ANFIS-GA model attained the highest yields (92.36%) under the optimal parameters of 3 h reaction time, 120 °C reaction temperature, 3% wt catalyst dosage, 5:1 TMP/JSOME molar ratio, and 300 rpm agitation speed. Therefore, the incorporation of ANFIS and RSM with GA was more efficient in optimizing and predicting the biolubricant yield.</description><subject>Adaptive neuro fuzzy inference system</subject><subject>Genetic algorithm</subject><subject>Jatropha seed oil</subject><subject>Response surface methodology</subject><subject>Transesterification</subject><issn>2949-8392</issn><issn>2949-8392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkcFq3DAQhk1poSHNE_SiY_bgrSxbtnRcQpMupA007VmMpLFXxistkh3YfcQ-VbXZEnrSaOafj5_5i-JzRdcVrdov4zoZ9C9rRlmdO5Ry-q64YrKRpagle_9f_bG4SWnMEiZl1fLqqvjzdJjd3p1gdsGT0BO7wETmCD5hmjG63pm32QhzDIcdkIRoSXBZGIh2YVp0zDI_kyU5P5DdMf-tO2VRxHQImUXSEnswSPY474INUxiO5Pbn8_cVAW8JWMg-XpB4XGIg_XI6HYnzPUb0eSkds5c9ud38uN8-r8oBPc7OEJiGEN28y5OHzepT8aGHKeHNv_e6-H3_9dfdt_Lx6WF7t3ksDWOclrVudSM705teaDQdly2YVqIGEBXKRneGcsYRNLPGdKLXgtcUsOUSJO-gvi62F64NMKpDdHuIRxXAqddGiIOCmO1NqKik-VKVboVuGi2YoEhFbUFY2zHLz6z6wjIxpBSxf-NVVJ3TVaN6TVed01WXdOu_CwSfow</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Ude, Callistus N.</creator><creator>Igwilo, Christopher N.</creator><creator>Nwosu-Obieogu, Kenechi</creator><creator>Nnaji, Patrick C.</creator><creator>Oguanobi, Collins N.</creator><creator>Amulu, Ndidi F.</creator><creator>Eze, Cordelia Nneka</creator><creator>Omenihu, Uchenna C.</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20231201</creationdate><title>Optimization of dual transesterification of jatropha seed oil to biolubricant using hybridized response surface methodology (RSM) and adaptive neuro fuzzy inference system (ANFIS)-genetic algorithm (GA)</title><author>Ude, Callistus N. ; Igwilo, Christopher N. ; Nwosu-Obieogu, Kenechi ; Nnaji, Patrick C. ; Oguanobi, Collins N. ; Amulu, Ndidi F. ; Eze, Cordelia Nneka ; Omenihu, Uchenna C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2250-3b6b497cfcf8bec7596ac69ebaa81e94b7c0525eab2dcc78fb8530ae659a957a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive neuro fuzzy inference system</topic><topic>Genetic algorithm</topic><topic>Jatropha seed oil</topic><topic>Response surface methodology</topic><topic>Transesterification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ude, Callistus N.</creatorcontrib><creatorcontrib>Igwilo, Christopher N.</creatorcontrib><creatorcontrib>Nwosu-Obieogu, Kenechi</creatorcontrib><creatorcontrib>Nnaji, Patrick C.</creatorcontrib><creatorcontrib>Oguanobi, Collins N.</creatorcontrib><creatorcontrib>Amulu, Ndidi F.</creatorcontrib><creatorcontrib>Eze, Cordelia Nneka</creatorcontrib><creatorcontrib>Omenihu, Uchenna C.</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sustainable Chemistry for the Environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ude, Callistus N.</au><au>Igwilo, Christopher N.</au><au>Nwosu-Obieogu, Kenechi</au><au>Nnaji, Patrick C.</au><au>Oguanobi, Collins N.</au><au>Amulu, Ndidi F.</au><au>Eze, Cordelia Nneka</au><au>Omenihu, Uchenna C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of dual transesterification of jatropha seed oil to biolubricant using hybridized response surface methodology (RSM) and adaptive neuro fuzzy inference system (ANFIS)-genetic algorithm (GA)</atitle><jtitle>Sustainable Chemistry for the Environment</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>4</volume><spage>100050</spage><pages>100050-</pages><artnum>100050</artnum><issn>2949-8392</issn><eissn>2949-8392</eissn><abstract>The over-reliance of the industrial and automobile sectors on petroleum-based lubricants, the feedstocks of which pose environmental challenges, has generated the need for sustainable alternatives in order to promote economic development and a sustainable green environment. The study investigated the optimization of process variables for the dual transesterification of jatropha seed oil into a biolubricant using a hybridized response surface methodology-genetic algorithm (RSM-GA) and an adaptive neuro-fuzzy inference system-genetic algorithm (ANFIS-GA). The seed oil was extracted using a Soxhlet extractor and characterized for its physicochemical properties. The catalyst for the reaction was synthesized by the acid modification of clay. The experimental design was created using Design Expert, and process parameters were optimized using RSM-GA and ANFIS-GA. The yield of oil was 56%, and its properties did not impede the catalyst from transesterification without pretreatment. The modified clay effectively converted the jatropha seed oil into a biolubricant. The ANFIS-GA model attained the highest yields (92.36%) under the optimal parameters of 3 h reaction time, 120 °C reaction temperature, 3% wt catalyst dosage, 5:1 TMP/JSOME molar ratio, and 300 rpm agitation speed. Therefore, the incorporation of ANFIS and RSM with GA was more efficient in optimizing and predicting the biolubricant yield.</abstract><pub>Elsevier</pub><doi>10.1016/j.scenv.2023.100050</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2949-8392 |
ispartof | Sustainable Chemistry for the Environment, 2023-12, Vol.4, p.100050, Article 100050 |
issn | 2949-8392 2949-8392 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_090eed1b68b44b8280e083da8dd72d5a |
source | ScienceDirect Journals |
subjects | Adaptive neuro fuzzy inference system Genetic algorithm Jatropha seed oil Response surface methodology Transesterification |
title | Optimization of dual transesterification of jatropha seed oil to biolubricant using hybridized response surface methodology (RSM) and adaptive neuro fuzzy inference system (ANFIS)-genetic algorithm (GA) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20dual%20transesterification%20of%20jatropha%20seed%20oil%20to%20biolubricant%20using%20hybridized%20response%20surface%20methodology%20(RSM)%20and%20adaptive%20neuro%20fuzzy%20inference%20system%20(ANFIS)-genetic%20algorithm%20(GA)&rft.jtitle=Sustainable%20Chemistry%20for%20the%20Environment&rft.au=Ude,%20Callistus%20N.&rft.date=2023-12-01&rft.volume=4&rft.spage=100050&rft.pages=100050-&rft.artnum=100050&rft.issn=2949-8392&rft.eissn=2949-8392&rft_id=info:doi/10.1016/j.scenv.2023.100050&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_090eed1b68b44b8280e083da8dd72d5a%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2250-3b6b497cfcf8bec7596ac69ebaa81e94b7c0525eab2dcc78fb8530ae659a957a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |