Loading…

Combined immune checkpoint blockade increases CD8+CD28+PD-1+ effector T cells and provides a therapeutic strategy for patients with neuroblastoma

Immune checkpoint therapy has resulted in minimal clinical response in many pediatric cancers. We sought to understand the influence of immune checkpoint inhibition using anti-PD-1 and anti-CTLA-4 antibodies individually, in combination, and after chemotherapy on immune responses in minimal and esta...

Full description

Saved in:
Bibliographic Details
Published in:Oncoimmunology 2021-01, Vol.10 (1), p.1838140-1838140
Main Authors: Shirinbak, Soheila, Chan, Randall Y., Shahani, Shilpa, Muthugounder, Sakunthala, Kennedy, Rebekah, Hung, Long T., Fernandez, G. Esteban, Hadjidaniel, Michael D., Moghimi, Babak, Sheard, Michael A., Epstein, Alan L., Fabbri, Muller, Shimada, Hiroyuki, Asgharzadeh, Shahab
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c586t-69181883fcd2ea96cfbc934fa1c431822b11501449afa50f9ef5b96b2e0c62703
cites cdi_FETCH-LOGICAL-c586t-69181883fcd2ea96cfbc934fa1c431822b11501449afa50f9ef5b96b2e0c62703
container_end_page 1838140
container_issue 1
container_start_page 1838140
container_title Oncoimmunology
container_volume 10
creator Shirinbak, Soheila
Chan, Randall Y.
Shahani, Shilpa
Muthugounder, Sakunthala
Kennedy, Rebekah
Hung, Long T.
Fernandez, G. Esteban
Hadjidaniel, Michael D.
Moghimi, Babak
Sheard, Michael A.
Epstein, Alan L.
Fabbri, Muller
Shimada, Hiroyuki
Asgharzadeh, Shahab
description Immune checkpoint therapy has resulted in minimal clinical response in many pediatric cancers. We sought to understand the influence of immune checkpoint inhibition using anti-PD-1 and anti-CTLA-4 antibodies individually, in combination, and after chemotherapy on immune responses in minimal and established murine neuroblastoma models. We also sought to understand the role of the tumor microenvironment (TME) and PD-L1 expression and their alteration post-chemotherapy in our models and human tissues. PD-L1 expression was enriched in human tumor-associated macrophages and up-regulated after chemotherapy. In a murine minimal disease model, single and dual immune checkpoint blockade promoted tumor rejection, improved survival, and established immune memory with long-term anti-tumor immunity against re-challenge. In an established tumor model, only dual immune checkpoint blockade showed efficacy. Interestingly, dual immune checkpoint therapy distinctly influenced adaptive and innate immune responses, with significant increase in CD8 + CD28 + PD-1 + T cells and inflammatory macrophages (CD11b hi CD11c − F4/80 + Ly6C hi ) in tumor-draining lymph nodes. Adding chemotherapy before immunotherapy provided significant survival benefit for mice with established tumors receiving anti-PD-1 or dual immune checkpoint blockade. Our findings demonstrate anti-PD-1 and anti-CTLA-4 therapy induces a novel subset of effector T cells, and support administration of induction chemotherapy immediately prior to immune checkpoint blockade in children with high-risk neuroblastoma.
doi_str_mv 10.1080/2162402X.2020.1838140
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0915f141d7a649279983360de71ca579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0915f141d7a649279983360de71ca579</doaj_id><sourcerecordid>2480732492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-69181883fcd2ea96cfbc934fa1c431822b11501449afa50f9ef5b96b2e0c62703</originalsourceid><addsrcrecordid>eNp9UstuFDEQHCEQiUI-AeQjUrTBj3nYFwTaDRApEhyCxM3q8bR3ncyMB9uTaD-DP8bLbqLkgi-2qqur2nYVxVtGzxmV9ANnNS8p_3XOKc-QFJKV9EVxvMMXu8LLJ-ej4jTGG5pXTataqNfFkRClVGUtj4s_Sz-0bsSOuGGYRyRmg-Z28m5MpO29uYUOiRtNQIgYyXIlz5YrLs9-rBbsjKC1aJIP5JoY7PtIYOzIFPyd6zIZSNpggAnn5AyJKUDC9ZbYzJ8gORxTJPcubciIc_BtDzH5Ad4Uryz0EU8P-0nx88vF9fLb4ur718vl56uFqWSdFrVikkkprOk4gqqNbY0SpQVmSsEk5y1jFWVlqcBCRa1CW7WqbjlSU_OGipPicq_bebjRU3ADhK324PQ_wIe1hpAH71FTxSrLStY1UJeKN0pJIWraYcMMVI3KWh_3WtPcDtiZfLUA_TPR55XRbfTa3-lGUsZ4lQXeHwSC_z1jTHpwcfekMKKfo-alpI3g2TxTqz3VBB9jQPtow6jepUM_pEPv0qEP6ch9757O-Nj1kIVM-LQnuDF_0QD3PvSdTrDtfbABRuOiFv_3-AvEf8pk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480732492</pqid></control><display><type>article</type><title>Combined immune checkpoint blockade increases CD8+CD28+PD-1+ effector T cells and provides a therapeutic strategy for patients with neuroblastoma</title><source>Open Access: PubMed Central</source><source>Taylor &amp; Francis Open Access</source><creator>Shirinbak, Soheila ; Chan, Randall Y. ; Shahani, Shilpa ; Muthugounder, Sakunthala ; Kennedy, Rebekah ; Hung, Long T. ; Fernandez, G. Esteban ; Hadjidaniel, Michael D. ; Moghimi, Babak ; Sheard, Michael A. ; Epstein, Alan L. ; Fabbri, Muller ; Shimada, Hiroyuki ; Asgharzadeh, Shahab</creator><creatorcontrib>Shirinbak, Soheila ; Chan, Randall Y. ; Shahani, Shilpa ; Muthugounder, Sakunthala ; Kennedy, Rebekah ; Hung, Long T. ; Fernandez, G. Esteban ; Hadjidaniel, Michael D. ; Moghimi, Babak ; Sheard, Michael A. ; Epstein, Alan L. ; Fabbri, Muller ; Shimada, Hiroyuki ; Asgharzadeh, Shahab</creatorcontrib><description>Immune checkpoint therapy has resulted in minimal clinical response in many pediatric cancers. We sought to understand the influence of immune checkpoint inhibition using anti-PD-1 and anti-CTLA-4 antibodies individually, in combination, and after chemotherapy on immune responses in minimal and established murine neuroblastoma models. We also sought to understand the role of the tumor microenvironment (TME) and PD-L1 expression and their alteration post-chemotherapy in our models and human tissues. PD-L1 expression was enriched in human tumor-associated macrophages and up-regulated after chemotherapy. In a murine minimal disease model, single and dual immune checkpoint blockade promoted tumor rejection, improved survival, and established immune memory with long-term anti-tumor immunity against re-challenge. In an established tumor model, only dual immune checkpoint blockade showed efficacy. Interestingly, dual immune checkpoint therapy distinctly influenced adaptive and innate immune responses, with significant increase in CD8 + CD28 + PD-1 + T cells and inflammatory macrophages (CD11b hi CD11c − F4/80 + Ly6C hi ) in tumor-draining lymph nodes. Adding chemotherapy before immunotherapy provided significant survival benefit for mice with established tumors receiving anti-PD-1 or dual immune checkpoint blockade. Our findings demonstrate anti-PD-1 and anti-CTLA-4 therapy induces a novel subset of effector T cells, and support administration of induction chemotherapy immediately prior to immune checkpoint blockade in children with high-risk neuroblastoma.</description><identifier>ISSN: 2162-402X</identifier><identifier>ISSN: 2162-4011</identifier><identifier>EISSN: 2162-402X</identifier><identifier>DOI: 10.1080/2162402X.2020.1838140</identifier><identifier>PMID: 33489468</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Animals ; CD28 Antigens ; CD8-Positive T-Lymphocytes ; dual immune checkpoint therapy ; Humans ; Immune Checkpoint Inhibitors ; immune checkpoint therapy ; Mice ; neuroblastoma ; Neuroblastoma - drug therapy ; Original Research ; Programmed Cell Death 1 Receptor ; T-Lymphocytes ; Tumor Microenvironment ; tumor-associated macrophages</subject><ispartof>Oncoimmunology, 2021-01, Vol.10 (1), p.1838140-1838140</ispartof><rights>2021 The Author(s). Published with license by Taylor &amp; Francis Group, LLC. 2021</rights><rights>2021 The Author(s). Published with license by Taylor &amp; Francis Group, LLC.</rights><rights>2021 The Author(s). Published with license by Taylor &amp; Francis Group, LLC. 2021 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-69181883fcd2ea96cfbc934fa1c431822b11501449afa50f9ef5b96b2e0c62703</citedby><cites>FETCH-LOGICAL-c586t-69181883fcd2ea96cfbc934fa1c431822b11501449afa50f9ef5b96b2e0c62703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801125/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801125/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27502,27924,27925,53791,53793,59143,59144</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33489468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shirinbak, Soheila</creatorcontrib><creatorcontrib>Chan, Randall Y.</creatorcontrib><creatorcontrib>Shahani, Shilpa</creatorcontrib><creatorcontrib>Muthugounder, Sakunthala</creatorcontrib><creatorcontrib>Kennedy, Rebekah</creatorcontrib><creatorcontrib>Hung, Long T.</creatorcontrib><creatorcontrib>Fernandez, G. Esteban</creatorcontrib><creatorcontrib>Hadjidaniel, Michael D.</creatorcontrib><creatorcontrib>Moghimi, Babak</creatorcontrib><creatorcontrib>Sheard, Michael A.</creatorcontrib><creatorcontrib>Epstein, Alan L.</creatorcontrib><creatorcontrib>Fabbri, Muller</creatorcontrib><creatorcontrib>Shimada, Hiroyuki</creatorcontrib><creatorcontrib>Asgharzadeh, Shahab</creatorcontrib><title>Combined immune checkpoint blockade increases CD8+CD28+PD-1+ effector T cells and provides a therapeutic strategy for patients with neuroblastoma</title><title>Oncoimmunology</title><addtitle>Oncoimmunology</addtitle><description>Immune checkpoint therapy has resulted in minimal clinical response in many pediatric cancers. We sought to understand the influence of immune checkpoint inhibition using anti-PD-1 and anti-CTLA-4 antibodies individually, in combination, and after chemotherapy on immune responses in minimal and established murine neuroblastoma models. We also sought to understand the role of the tumor microenvironment (TME) and PD-L1 expression and their alteration post-chemotherapy in our models and human tissues. PD-L1 expression was enriched in human tumor-associated macrophages and up-regulated after chemotherapy. In a murine minimal disease model, single and dual immune checkpoint blockade promoted tumor rejection, improved survival, and established immune memory with long-term anti-tumor immunity against re-challenge. In an established tumor model, only dual immune checkpoint blockade showed efficacy. Interestingly, dual immune checkpoint therapy distinctly influenced adaptive and innate immune responses, with significant increase in CD8 + CD28 + PD-1 + T cells and inflammatory macrophages (CD11b hi CD11c − F4/80 + Ly6C hi ) in tumor-draining lymph nodes. Adding chemotherapy before immunotherapy provided significant survival benefit for mice with established tumors receiving anti-PD-1 or dual immune checkpoint blockade. Our findings demonstrate anti-PD-1 and anti-CTLA-4 therapy induces a novel subset of effector T cells, and support administration of induction chemotherapy immediately prior to immune checkpoint blockade in children with high-risk neuroblastoma.</description><subject>Animals</subject><subject>CD28 Antigens</subject><subject>CD8-Positive T-Lymphocytes</subject><subject>dual immune checkpoint therapy</subject><subject>Humans</subject><subject>Immune Checkpoint Inhibitors</subject><subject>immune checkpoint therapy</subject><subject>Mice</subject><subject>neuroblastoma</subject><subject>Neuroblastoma - drug therapy</subject><subject>Original Research</subject><subject>Programmed Cell Death 1 Receptor</subject><subject>T-Lymphocytes</subject><subject>Tumor Microenvironment</subject><subject>tumor-associated macrophages</subject><issn>2162-402X</issn><issn>2162-4011</issn><issn>2162-402X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9UstuFDEQHCEQiUI-AeQjUrTBj3nYFwTaDRApEhyCxM3q8bR3ncyMB9uTaD-DP8bLbqLkgi-2qqur2nYVxVtGzxmV9ANnNS8p_3XOKc-QFJKV9EVxvMMXu8LLJ-ej4jTGG5pXTataqNfFkRClVGUtj4s_Sz-0bsSOuGGYRyRmg-Z28m5MpO29uYUOiRtNQIgYyXIlz5YrLs9-rBbsjKC1aJIP5JoY7PtIYOzIFPyd6zIZSNpggAnn5AyJKUDC9ZbYzJ8gORxTJPcubciIc_BtDzH5Ad4Uryz0EU8P-0nx88vF9fLb4ur718vl56uFqWSdFrVikkkprOk4gqqNbY0SpQVmSsEk5y1jFWVlqcBCRa1CW7WqbjlSU_OGipPicq_bebjRU3ADhK324PQ_wIe1hpAH71FTxSrLStY1UJeKN0pJIWraYcMMVI3KWh_3WtPcDtiZfLUA_TPR55XRbfTa3-lGUsZ4lQXeHwSC_z1jTHpwcfekMKKfo-alpI3g2TxTqz3VBB9jQPtow6jepUM_pEPv0qEP6ch9757O-Nj1kIVM-LQnuDF_0QD3PvSdTrDtfbABRuOiFv_3-AvEf8pk</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Shirinbak, Soheila</creator><creator>Chan, Randall Y.</creator><creator>Shahani, Shilpa</creator><creator>Muthugounder, Sakunthala</creator><creator>Kennedy, Rebekah</creator><creator>Hung, Long T.</creator><creator>Fernandez, G. Esteban</creator><creator>Hadjidaniel, Michael D.</creator><creator>Moghimi, Babak</creator><creator>Sheard, Michael A.</creator><creator>Epstein, Alan L.</creator><creator>Fabbri, Muller</creator><creator>Shimada, Hiroyuki</creator><creator>Asgharzadeh, Shahab</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210101</creationdate><title>Combined immune checkpoint blockade increases CD8+CD28+PD-1+ effector T cells and provides a therapeutic strategy for patients with neuroblastoma</title><author>Shirinbak, Soheila ; Chan, Randall Y. ; Shahani, Shilpa ; Muthugounder, Sakunthala ; Kennedy, Rebekah ; Hung, Long T. ; Fernandez, G. Esteban ; Hadjidaniel, Michael D. ; Moghimi, Babak ; Sheard, Michael A. ; Epstein, Alan L. ; Fabbri, Muller ; Shimada, Hiroyuki ; Asgharzadeh, Shahab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-69181883fcd2ea96cfbc934fa1c431822b11501449afa50f9ef5b96b2e0c62703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>CD28 Antigens</topic><topic>CD8-Positive T-Lymphocytes</topic><topic>dual immune checkpoint therapy</topic><topic>Humans</topic><topic>Immune Checkpoint Inhibitors</topic><topic>immune checkpoint therapy</topic><topic>Mice</topic><topic>neuroblastoma</topic><topic>Neuroblastoma - drug therapy</topic><topic>Original Research</topic><topic>Programmed Cell Death 1 Receptor</topic><topic>T-Lymphocytes</topic><topic>Tumor Microenvironment</topic><topic>tumor-associated macrophages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirinbak, Soheila</creatorcontrib><creatorcontrib>Chan, Randall Y.</creatorcontrib><creatorcontrib>Shahani, Shilpa</creatorcontrib><creatorcontrib>Muthugounder, Sakunthala</creatorcontrib><creatorcontrib>Kennedy, Rebekah</creatorcontrib><creatorcontrib>Hung, Long T.</creatorcontrib><creatorcontrib>Fernandez, G. Esteban</creatorcontrib><creatorcontrib>Hadjidaniel, Michael D.</creatorcontrib><creatorcontrib>Moghimi, Babak</creatorcontrib><creatorcontrib>Sheard, Michael A.</creatorcontrib><creatorcontrib>Epstein, Alan L.</creatorcontrib><creatorcontrib>Fabbri, Muller</creatorcontrib><creatorcontrib>Shimada, Hiroyuki</creatorcontrib><creatorcontrib>Asgharzadeh, Shahab</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Oncoimmunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirinbak, Soheila</au><au>Chan, Randall Y.</au><au>Shahani, Shilpa</au><au>Muthugounder, Sakunthala</au><au>Kennedy, Rebekah</au><au>Hung, Long T.</au><au>Fernandez, G. Esteban</au><au>Hadjidaniel, Michael D.</au><au>Moghimi, Babak</au><au>Sheard, Michael A.</au><au>Epstein, Alan L.</au><au>Fabbri, Muller</au><au>Shimada, Hiroyuki</au><au>Asgharzadeh, Shahab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined immune checkpoint blockade increases CD8+CD28+PD-1+ effector T cells and provides a therapeutic strategy for patients with neuroblastoma</atitle><jtitle>Oncoimmunology</jtitle><addtitle>Oncoimmunology</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>10</volume><issue>1</issue><spage>1838140</spage><epage>1838140</epage><pages>1838140-1838140</pages><issn>2162-402X</issn><issn>2162-4011</issn><eissn>2162-402X</eissn><abstract>Immune checkpoint therapy has resulted in minimal clinical response in many pediatric cancers. We sought to understand the influence of immune checkpoint inhibition using anti-PD-1 and anti-CTLA-4 antibodies individually, in combination, and after chemotherapy on immune responses in minimal and established murine neuroblastoma models. We also sought to understand the role of the tumor microenvironment (TME) and PD-L1 expression and their alteration post-chemotherapy in our models and human tissues. PD-L1 expression was enriched in human tumor-associated macrophages and up-regulated after chemotherapy. In a murine minimal disease model, single and dual immune checkpoint blockade promoted tumor rejection, improved survival, and established immune memory with long-term anti-tumor immunity against re-challenge. In an established tumor model, only dual immune checkpoint blockade showed efficacy. Interestingly, dual immune checkpoint therapy distinctly influenced adaptive and innate immune responses, with significant increase in CD8 + CD28 + PD-1 + T cells and inflammatory macrophages (CD11b hi CD11c − F4/80 + Ly6C hi ) in tumor-draining lymph nodes. Adding chemotherapy before immunotherapy provided significant survival benefit for mice with established tumors receiving anti-PD-1 or dual immune checkpoint blockade. Our findings demonstrate anti-PD-1 and anti-CTLA-4 therapy induces a novel subset of effector T cells, and support administration of induction chemotherapy immediately prior to immune checkpoint blockade in children with high-risk neuroblastoma.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>33489468</pmid><doi>10.1080/2162402X.2020.1838140</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2162-402X
ispartof Oncoimmunology, 2021-01, Vol.10 (1), p.1838140-1838140
issn 2162-402X
2162-4011
2162-402X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0915f141d7a649279983360de71ca579
source Open Access: PubMed Central; Taylor & Francis Open Access
subjects Animals
CD28 Antigens
CD8-Positive T-Lymphocytes
dual immune checkpoint therapy
Humans
Immune Checkpoint Inhibitors
immune checkpoint therapy
Mice
neuroblastoma
Neuroblastoma - drug therapy
Original Research
Programmed Cell Death 1 Receptor
T-Lymphocytes
Tumor Microenvironment
tumor-associated macrophages
title Combined immune checkpoint blockade increases CD8+CD28+PD-1+ effector T cells and provides a therapeutic strategy for patients with neuroblastoma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20immune%20checkpoint%20blockade%20increases%20CD8+CD28+PD-1+%20effector%20T%20cells%20and%20provides%20a%20therapeutic%20strategy%20for%20patients%20with%20neuroblastoma&rft.jtitle=Oncoimmunology&rft.au=Shirinbak,%20Soheila&rft.date=2021-01-01&rft.volume=10&rft.issue=1&rft.spage=1838140&rft.epage=1838140&rft.pages=1838140-1838140&rft.issn=2162-402X&rft.eissn=2162-402X&rft_id=info:doi/10.1080/2162402X.2020.1838140&rft_dat=%3Cproquest_doaj_%3E2480732492%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c586t-69181883fcd2ea96cfbc934fa1c431822b11501449afa50f9ef5b96b2e0c62703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480732492&rft_id=info:pmid/33489468&rfr_iscdi=true