Loading…

Multistage coupling water-enabled electric generator with customizable energy output

Constant water circulation between land, ocean and atmosphere contains great and sustainable energy, which has been successfully employed to generate electricity by the burgeoning water-enabled electric generator. However, water in various forms (e.g. liquid, moisture) is inevitably discharged after...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-09, Vol.14 (1), p.5702-9, Article 5702
Main Authors: Li, Puying, Hu, Yajie, He, Wenya, Lu, Bing, Wang, Haiyan, Cheng, Huhu, Qu, Liangti
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Constant water circulation between land, ocean and atmosphere contains great and sustainable energy, which has been successfully employed to generate electricity by the burgeoning water-enabled electric generator. However, water in various forms (e.g. liquid, moisture) is inevitably discharged after one-time use in current single-stage water-enabled electric generators, resulting in the huge waste of inherent energy within water circulation. Herein, a multistage coupling water-enabled electric generator is proposed, which utilizes the internal liquid flow and subsequently generated moisture to produce electricity synchronously, achieving a maximum output power density of ~92 mW m −2 (~11 W m −3 ). Furthermore, a distributary design for internal water in different forms enables the integration of water-flow-enabled and moisture-diffusion-enabled electricity generation layers into mc-WEG by a “flexible building blocks” strategy. Through a three-stage adjustment process encompassing size control, space optimization, and large-scale integration, the multistage coupling water-enabled electric generator realizes the customized electricity output for diverse electronics. Twenty-two units connected in series can deliver ~10 V and ~280 μA, which can directly lighten a table lamp for 30 min without aforehand capacitor charging. In addition, multistage coupling water-enabled electric generators exhibit excellent flexibility and environmental adaptability, providing a way for the development of water-enabled electric generators. Liquid water or moisture discharge is a significant source of energy waste in current single-stage water-enabled electric generators. Here, authors propose a modular multistage coupling device that integrates internal liquid water flow and subsequently generated moisture to optimize energy harvesting at all stages.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-41371-x