Loading…

Adaptive sparse sampling for quasiparticle interference imaging

Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope is traditionally tedious due to the large number of required measurements tha...

Full description

Saved in:
Bibliographic Details
Published in:MethodsX 2022-01, Vol.9, p.101784-101784, Article 101784
Main Authors: Oppliger, Jens, Zengin, Berk, Liu, Danyang, Hauser, Kevin, Witteveen, Catherine, von Rohr, Fabian, Natterer, Fabian Donat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c446t-95c7fe50bd0ad659da6851f556710f80dfadf98592b78ed4be8f94ff1ff6f6e93
container_end_page 101784
container_issue
container_start_page 101784
container_title MethodsX
container_volume 9
creator Oppliger, Jens
Zengin, Berk
Liu, Danyang
Hauser, Kevin
Witteveen, Catherine
von Rohr, Fabian
Natterer, Fabian Donat
description Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope is traditionally tedious due to the large number of required measurements that may take several days to complete. The recent demonstration of sparse sampling for QPI imaging showed how the effective measurement time could be fundamentally reduced by only sampling a small and random subset of the total LDOS. However, the amount of required sub-sampling to faithfully recover the QPI image remained a recurring question. Here we introduce an adaptive sparse sampling (ASS) approach in which we gradually accumulate sparsely sampled LDOS measurements until a desired quality level is achieved via compressive sensing recovery. The iteratively measured random subset of the LDOS can be interleaved with regular topographic images that are used for image registry and drift correction. These reference topographies also allow to resume interrupted measurements to further improve the QPI quality. Our ASS approach is a convenient extension to quasiparticle interference imaging that should remove further hesitation in the implementation of sparse sampling mapping schemes. • Accumulative sampling for unknown degree of sparsity • Controllably interrupt and resume QPI measurements • Scattering wave conserving background subtractions [Display omitted]
doi_str_mv 10.1016/j.mex.2022.101784
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_09630fa01cca4b0c866ca08fb88a7cb0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2215016122001649</els_id><doaj_id>oai_doaj_org_article_09630fa01cca4b0c866ca08fb88a7cb0</doaj_id><sourcerecordid>2696011052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-95c7fe50bd0ad659da6851f556710f80dfadf98592b78ed4be8f94ff1ff6f6e93</originalsourceid><addsrcrecordid>eNp9UU1PHDEMjSqqgig_oLc99rJbJ5NkElVqhRAFJKRe2nOUSZxtVvNFMruCf0-ms0Jw4eTYfu_Z8SPkC4UNBSq_7TYdPm4YMDbnteIfyBljVKxLk568ep-Si5x3AEArXlHOPpHTSiitJK3OyM9Lb8cpHnCVR5tyCbYb29hvV2FIq4e9zbHUp-haXMV-whQwYe9K0tltgX0mH4NtM14c4zn5--v6z9Xt-v73zd3V5f3acS6ntRauDiig8WC9FNpbqQQNQsiaQlDgg_VBK6FZUyv0vEEVNA-BhiCDRF2dk7tF1w92Z8ZUxqcnM9ho_heGtDXHNQ1oWUGwQJ2zvAGnpHQWVGiUsrVroGj9WLTGfdOhd9hPybZvRN92-vjPbIeD0RVoDvMyX48CaXjYY55MF7PDtrU9DvtsmNQSKAXBCpQuUJeGnBOGlzEUzOyj2Znio5l9NIuPhfN94WA56CFiMtnF-eg-JnRT-XF8h_0M_UOlng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696011052</pqid></control><display><type>article</type><title>Adaptive sparse sampling for quasiparticle interference imaging</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Oppliger, Jens ; Zengin, Berk ; Liu, Danyang ; Hauser, Kevin ; Witteveen, Catherine ; von Rohr, Fabian ; Natterer, Fabian Donat</creator><creatorcontrib>Oppliger, Jens ; Zengin, Berk ; Liu, Danyang ; Hauser, Kevin ; Witteveen, Catherine ; von Rohr, Fabian ; Natterer, Fabian Donat</creatorcontrib><description>Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope is traditionally tedious due to the large number of required measurements that may take several days to complete. The recent demonstration of sparse sampling for QPI imaging showed how the effective measurement time could be fundamentally reduced by only sampling a small and random subset of the total LDOS. However, the amount of required sub-sampling to faithfully recover the QPI image remained a recurring question. Here we introduce an adaptive sparse sampling (ASS) approach in which we gradually accumulate sparsely sampled LDOS measurements until a desired quality level is achieved via compressive sensing recovery. The iteratively measured random subset of the LDOS can be interleaved with regular topographic images that are used for image registry and drift correction. These reference topographies also allow to resume interrupted measurements to further improve the QPI quality. Our ASS approach is a convenient extension to quasiparticle interference imaging that should remove further hesitation in the implementation of sparse sampling mapping schemes. • Accumulative sampling for unknown degree of sparsity • Controllably interrupt and resume QPI measurements • Scattering wave conserving background subtractions [Display omitted]</description><identifier>ISSN: 2215-0161</identifier><identifier>EISSN: 2215-0161</identifier><identifier>DOI: 10.1016/j.mex.2022.101784</identifier><identifier>PMID: 35898613</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Fourier Transform scanning tunneling microscopy ; Method ; Quantum materials characterization ; Quasiparticle interference imaging ; Sparse Sampling</subject><ispartof>MethodsX, 2022-01, Vol.9, p.101784-101784, Article 101784</ispartof><rights>2022</rights><rights>2022 The Author(s). Published by Elsevier B.V. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c446t-95c7fe50bd0ad659da6851f556710f80dfadf98592b78ed4be8f94ff1ff6f6e93</cites><orcidid>0000-0002-2488-5988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309409/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2215016122001649$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids></links><search><creatorcontrib>Oppliger, Jens</creatorcontrib><creatorcontrib>Zengin, Berk</creatorcontrib><creatorcontrib>Liu, Danyang</creatorcontrib><creatorcontrib>Hauser, Kevin</creatorcontrib><creatorcontrib>Witteveen, Catherine</creatorcontrib><creatorcontrib>von Rohr, Fabian</creatorcontrib><creatorcontrib>Natterer, Fabian Donat</creatorcontrib><title>Adaptive sparse sampling for quasiparticle interference imaging</title><title>MethodsX</title><description>Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope is traditionally tedious due to the large number of required measurements that may take several days to complete. The recent demonstration of sparse sampling for QPI imaging showed how the effective measurement time could be fundamentally reduced by only sampling a small and random subset of the total LDOS. However, the amount of required sub-sampling to faithfully recover the QPI image remained a recurring question. Here we introduce an adaptive sparse sampling (ASS) approach in which we gradually accumulate sparsely sampled LDOS measurements until a desired quality level is achieved via compressive sensing recovery. The iteratively measured random subset of the LDOS can be interleaved with regular topographic images that are used for image registry and drift correction. These reference topographies also allow to resume interrupted measurements to further improve the QPI quality. Our ASS approach is a convenient extension to quasiparticle interference imaging that should remove further hesitation in the implementation of sparse sampling mapping schemes. • Accumulative sampling for unknown degree of sparsity • Controllably interrupt and resume QPI measurements • Scattering wave conserving background subtractions [Display omitted]</description><subject>Fourier Transform scanning tunneling microscopy</subject><subject>Method</subject><subject>Quantum materials characterization</subject><subject>Quasiparticle interference imaging</subject><subject>Sparse Sampling</subject><issn>2215-0161</issn><issn>2215-0161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UU1PHDEMjSqqgig_oLc99rJbJ5NkElVqhRAFJKRe2nOUSZxtVvNFMruCf0-ms0Jw4eTYfu_Z8SPkC4UNBSq_7TYdPm4YMDbnteIfyBljVKxLk568ep-Si5x3AEArXlHOPpHTSiitJK3OyM9Lb8cpHnCVR5tyCbYb29hvV2FIq4e9zbHUp-haXMV-whQwYe9K0tltgX0mH4NtM14c4zn5--v6z9Xt-v73zd3V5f3acS6ntRauDiig8WC9FNpbqQQNQsiaQlDgg_VBK6FZUyv0vEEVNA-BhiCDRF2dk7tF1w92Z8ZUxqcnM9ho_heGtDXHNQ1oWUGwQJ2zvAGnpHQWVGiUsrVroGj9WLTGfdOhd9hPybZvRN92-vjPbIeD0RVoDvMyX48CaXjYY55MF7PDtrU9DvtsmNQSKAXBCpQuUJeGnBOGlzEUzOyj2Znio5l9NIuPhfN94WA56CFiMtnF-eg-JnRT-XF8h_0M_UOlng</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Oppliger, Jens</creator><creator>Zengin, Berk</creator><creator>Liu, Danyang</creator><creator>Hauser, Kevin</creator><creator>Witteveen, Catherine</creator><creator>von Rohr, Fabian</creator><creator>Natterer, Fabian Donat</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2488-5988</orcidid></search><sort><creationdate>20220101</creationdate><title>Adaptive sparse sampling for quasiparticle interference imaging</title><author>Oppliger, Jens ; Zengin, Berk ; Liu, Danyang ; Hauser, Kevin ; Witteveen, Catherine ; von Rohr, Fabian ; Natterer, Fabian Donat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-95c7fe50bd0ad659da6851f556710f80dfadf98592b78ed4be8f94ff1ff6f6e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Fourier Transform scanning tunneling microscopy</topic><topic>Method</topic><topic>Quantum materials characterization</topic><topic>Quasiparticle interference imaging</topic><topic>Sparse Sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oppliger, Jens</creatorcontrib><creatorcontrib>Zengin, Berk</creatorcontrib><creatorcontrib>Liu, Danyang</creatorcontrib><creatorcontrib>Hauser, Kevin</creatorcontrib><creatorcontrib>Witteveen, Catherine</creatorcontrib><creatorcontrib>von Rohr, Fabian</creatorcontrib><creatorcontrib>Natterer, Fabian Donat</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>MethodsX</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oppliger, Jens</au><au>Zengin, Berk</au><au>Liu, Danyang</au><au>Hauser, Kevin</au><au>Witteveen, Catherine</au><au>von Rohr, Fabian</au><au>Natterer, Fabian Donat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive sparse sampling for quasiparticle interference imaging</atitle><jtitle>MethodsX</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>9</volume><spage>101784</spage><epage>101784</epage><pages>101784-101784</pages><artnum>101784</artnum><issn>2215-0161</issn><eissn>2215-0161</eissn><abstract>Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope is traditionally tedious due to the large number of required measurements that may take several days to complete. The recent demonstration of sparse sampling for QPI imaging showed how the effective measurement time could be fundamentally reduced by only sampling a small and random subset of the total LDOS. However, the amount of required sub-sampling to faithfully recover the QPI image remained a recurring question. Here we introduce an adaptive sparse sampling (ASS) approach in which we gradually accumulate sparsely sampled LDOS measurements until a desired quality level is achieved via compressive sensing recovery. The iteratively measured random subset of the LDOS can be interleaved with regular topographic images that are used for image registry and drift correction. These reference topographies also allow to resume interrupted measurements to further improve the QPI quality. Our ASS approach is a convenient extension to quasiparticle interference imaging that should remove further hesitation in the implementation of sparse sampling mapping schemes. • Accumulative sampling for unknown degree of sparsity • Controllably interrupt and resume QPI measurements • Scattering wave conserving background subtractions [Display omitted]</abstract><pub>Elsevier B.V</pub><pmid>35898613</pmid><doi>10.1016/j.mex.2022.101784</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2488-5988</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2215-0161
ispartof MethodsX, 2022-01, Vol.9, p.101784-101784, Article 101784
issn 2215-0161
2215-0161
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_09630fa01cca4b0c866ca08fb88a7cb0
source Elsevier ScienceDirect Journals; PubMed Central
subjects Fourier Transform scanning tunneling microscopy
Method
Quantum materials characterization
Quasiparticle interference imaging
Sparse Sampling
title Adaptive sparse sampling for quasiparticle interference imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20sparse%20sampling%20for%20quasiparticle%20interference%20imaging&rft.jtitle=MethodsX&rft.au=Oppliger,%20Jens&rft.date=2022-01-01&rft.volume=9&rft.spage=101784&rft.epage=101784&rft.pages=101784-101784&rft.artnum=101784&rft.issn=2215-0161&rft.eissn=2215-0161&rft_id=info:doi/10.1016/j.mex.2022.101784&rft_dat=%3Cproquest_doaj_%3E2696011052%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-95c7fe50bd0ad659da6851f556710f80dfadf98592b78ed4be8f94ff1ff6f6e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2696011052&rft_id=info:pmid/35898613&rfr_iscdi=true