Loading…
Adaptive sparse sampling for quasiparticle interference imaging
Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope is traditionally tedious due to the large number of required measurements tha...
Saved in:
Published in: | MethodsX 2022-01, Vol.9, p.101784-101784, Article 101784 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c446t-95c7fe50bd0ad659da6851f556710f80dfadf98592b78ed4be8f94ff1ff6f6e93 |
container_end_page | 101784 |
container_issue | |
container_start_page | 101784 |
container_title | MethodsX |
container_volume | 9 |
creator | Oppliger, Jens Zengin, Berk Liu, Danyang Hauser, Kevin Witteveen, Catherine von Rohr, Fabian Natterer, Fabian Donat |
description | Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope is traditionally tedious due to the large number of required measurements that may take several days to complete. The recent demonstration of sparse sampling for QPI imaging showed how the effective measurement time could be fundamentally reduced by only sampling a small and random subset of the total LDOS. However, the amount of required sub-sampling to faithfully recover the QPI image remained a recurring question. Here we introduce an adaptive sparse sampling (ASS) approach in which we gradually accumulate sparsely sampled LDOS measurements until a desired quality level is achieved via compressive sensing recovery. The iteratively measured random subset of the LDOS can be interleaved with regular topographic images that are used for image registry and drift correction. These reference topographies also allow to resume interrupted measurements to further improve the QPI quality. Our ASS approach is a convenient extension to quasiparticle interference imaging that should remove further hesitation in the implementation of sparse sampling mapping schemes.
• Accumulative sampling for unknown degree of sparsity
• Controllably interrupt and resume QPI measurements
• Scattering wave conserving background subtractions
[Display omitted] |
doi_str_mv | 10.1016/j.mex.2022.101784 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_09630fa01cca4b0c866ca08fb88a7cb0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2215016122001649</els_id><doaj_id>oai_doaj_org_article_09630fa01cca4b0c866ca08fb88a7cb0</doaj_id><sourcerecordid>2696011052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-95c7fe50bd0ad659da6851f556710f80dfadf98592b78ed4be8f94ff1ff6f6e93</originalsourceid><addsrcrecordid>eNp9UU1PHDEMjSqqgig_oLc99rJbJ5NkElVqhRAFJKRe2nOUSZxtVvNFMruCf0-ms0Jw4eTYfu_Z8SPkC4UNBSq_7TYdPm4YMDbnteIfyBljVKxLk568ep-Si5x3AEArXlHOPpHTSiitJK3OyM9Lb8cpHnCVR5tyCbYb29hvV2FIq4e9zbHUp-haXMV-whQwYe9K0tltgX0mH4NtM14c4zn5--v6z9Xt-v73zd3V5f3acS6ntRauDiig8WC9FNpbqQQNQsiaQlDgg_VBK6FZUyv0vEEVNA-BhiCDRF2dk7tF1w92Z8ZUxqcnM9ho_heGtDXHNQ1oWUGwQJ2zvAGnpHQWVGiUsrVroGj9WLTGfdOhd9hPybZvRN92-vjPbIeD0RVoDvMyX48CaXjYY55MF7PDtrU9DvtsmNQSKAXBCpQuUJeGnBOGlzEUzOyj2Znio5l9NIuPhfN94WA56CFiMtnF-eg-JnRT-XF8h_0M_UOlng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696011052</pqid></control><display><type>article</type><title>Adaptive sparse sampling for quasiparticle interference imaging</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Oppliger, Jens ; Zengin, Berk ; Liu, Danyang ; Hauser, Kevin ; Witteveen, Catherine ; von Rohr, Fabian ; Natterer, Fabian Donat</creator><creatorcontrib>Oppliger, Jens ; Zengin, Berk ; Liu, Danyang ; Hauser, Kevin ; Witteveen, Catherine ; von Rohr, Fabian ; Natterer, Fabian Donat</creatorcontrib><description>Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope is traditionally tedious due to the large number of required measurements that may take several days to complete. The recent demonstration of sparse sampling for QPI imaging showed how the effective measurement time could be fundamentally reduced by only sampling a small and random subset of the total LDOS. However, the amount of required sub-sampling to faithfully recover the QPI image remained a recurring question. Here we introduce an adaptive sparse sampling (ASS) approach in which we gradually accumulate sparsely sampled LDOS measurements until a desired quality level is achieved via compressive sensing recovery. The iteratively measured random subset of the LDOS can be interleaved with regular topographic images that are used for image registry and drift correction. These reference topographies also allow to resume interrupted measurements to further improve the QPI quality. Our ASS approach is a convenient extension to quasiparticle interference imaging that should remove further hesitation in the implementation of sparse sampling mapping schemes.
• Accumulative sampling for unknown degree of sparsity
• Controllably interrupt and resume QPI measurements
• Scattering wave conserving background subtractions
[Display omitted]</description><identifier>ISSN: 2215-0161</identifier><identifier>EISSN: 2215-0161</identifier><identifier>DOI: 10.1016/j.mex.2022.101784</identifier><identifier>PMID: 35898613</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Fourier Transform scanning tunneling microscopy ; Method ; Quantum materials characterization ; Quasiparticle interference imaging ; Sparse Sampling</subject><ispartof>MethodsX, 2022-01, Vol.9, p.101784-101784, Article 101784</ispartof><rights>2022</rights><rights>2022 The Author(s). Published by Elsevier B.V. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c446t-95c7fe50bd0ad659da6851f556710f80dfadf98592b78ed4be8f94ff1ff6f6e93</cites><orcidid>0000-0002-2488-5988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309409/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2215016122001649$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids></links><search><creatorcontrib>Oppliger, Jens</creatorcontrib><creatorcontrib>Zengin, Berk</creatorcontrib><creatorcontrib>Liu, Danyang</creatorcontrib><creatorcontrib>Hauser, Kevin</creatorcontrib><creatorcontrib>Witteveen, Catherine</creatorcontrib><creatorcontrib>von Rohr, Fabian</creatorcontrib><creatorcontrib>Natterer, Fabian Donat</creatorcontrib><title>Adaptive sparse sampling for quasiparticle interference imaging</title><title>MethodsX</title><description>Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope is traditionally tedious due to the large number of required measurements that may take several days to complete. The recent demonstration of sparse sampling for QPI imaging showed how the effective measurement time could be fundamentally reduced by only sampling a small and random subset of the total LDOS. However, the amount of required sub-sampling to faithfully recover the QPI image remained a recurring question. Here we introduce an adaptive sparse sampling (ASS) approach in which we gradually accumulate sparsely sampled LDOS measurements until a desired quality level is achieved via compressive sensing recovery. The iteratively measured random subset of the LDOS can be interleaved with regular topographic images that are used for image registry and drift correction. These reference topographies also allow to resume interrupted measurements to further improve the QPI quality. Our ASS approach is a convenient extension to quasiparticle interference imaging that should remove further hesitation in the implementation of sparse sampling mapping schemes.
• Accumulative sampling for unknown degree of sparsity
• Controllably interrupt and resume QPI measurements
• Scattering wave conserving background subtractions
[Display omitted]</description><subject>Fourier Transform scanning tunneling microscopy</subject><subject>Method</subject><subject>Quantum materials characterization</subject><subject>Quasiparticle interference imaging</subject><subject>Sparse Sampling</subject><issn>2215-0161</issn><issn>2215-0161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UU1PHDEMjSqqgig_oLc99rJbJ5NkElVqhRAFJKRe2nOUSZxtVvNFMruCf0-ms0Jw4eTYfu_Z8SPkC4UNBSq_7TYdPm4YMDbnteIfyBljVKxLk568ep-Si5x3AEArXlHOPpHTSiitJK3OyM9Lb8cpHnCVR5tyCbYb29hvV2FIq4e9zbHUp-haXMV-whQwYe9K0tltgX0mH4NtM14c4zn5--v6z9Xt-v73zd3V5f3acS6ntRauDiig8WC9FNpbqQQNQsiaQlDgg_VBK6FZUyv0vEEVNA-BhiCDRF2dk7tF1w92Z8ZUxqcnM9ho_heGtDXHNQ1oWUGwQJ2zvAGnpHQWVGiUsrVroGj9WLTGfdOhd9hPybZvRN92-vjPbIeD0RVoDvMyX48CaXjYY55MF7PDtrU9DvtsmNQSKAXBCpQuUJeGnBOGlzEUzOyj2Znio5l9NIuPhfN94WA56CFiMtnF-eg-JnRT-XF8h_0M_UOlng</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Oppliger, Jens</creator><creator>Zengin, Berk</creator><creator>Liu, Danyang</creator><creator>Hauser, Kevin</creator><creator>Witteveen, Catherine</creator><creator>von Rohr, Fabian</creator><creator>Natterer, Fabian Donat</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2488-5988</orcidid></search><sort><creationdate>20220101</creationdate><title>Adaptive sparse sampling for quasiparticle interference imaging</title><author>Oppliger, Jens ; Zengin, Berk ; Liu, Danyang ; Hauser, Kevin ; Witteveen, Catherine ; von Rohr, Fabian ; Natterer, Fabian Donat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-95c7fe50bd0ad659da6851f556710f80dfadf98592b78ed4be8f94ff1ff6f6e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Fourier Transform scanning tunneling microscopy</topic><topic>Method</topic><topic>Quantum materials characterization</topic><topic>Quasiparticle interference imaging</topic><topic>Sparse Sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oppliger, Jens</creatorcontrib><creatorcontrib>Zengin, Berk</creatorcontrib><creatorcontrib>Liu, Danyang</creatorcontrib><creatorcontrib>Hauser, Kevin</creatorcontrib><creatorcontrib>Witteveen, Catherine</creatorcontrib><creatorcontrib>von Rohr, Fabian</creatorcontrib><creatorcontrib>Natterer, Fabian Donat</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>MethodsX</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oppliger, Jens</au><au>Zengin, Berk</au><au>Liu, Danyang</au><au>Hauser, Kevin</au><au>Witteveen, Catherine</au><au>von Rohr, Fabian</au><au>Natterer, Fabian Donat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive sparse sampling for quasiparticle interference imaging</atitle><jtitle>MethodsX</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>9</volume><spage>101784</spage><epage>101784</epage><pages>101784-101784</pages><artnum>101784</artnum><issn>2215-0161</issn><eissn>2215-0161</eissn><abstract>Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope is traditionally tedious due to the large number of required measurements that may take several days to complete. The recent demonstration of sparse sampling for QPI imaging showed how the effective measurement time could be fundamentally reduced by only sampling a small and random subset of the total LDOS. However, the amount of required sub-sampling to faithfully recover the QPI image remained a recurring question. Here we introduce an adaptive sparse sampling (ASS) approach in which we gradually accumulate sparsely sampled LDOS measurements until a desired quality level is achieved via compressive sensing recovery. The iteratively measured random subset of the LDOS can be interleaved with regular topographic images that are used for image registry and drift correction. These reference topographies also allow to resume interrupted measurements to further improve the QPI quality. Our ASS approach is a convenient extension to quasiparticle interference imaging that should remove further hesitation in the implementation of sparse sampling mapping schemes.
• Accumulative sampling for unknown degree of sparsity
• Controllably interrupt and resume QPI measurements
• Scattering wave conserving background subtractions
[Display omitted]</abstract><pub>Elsevier B.V</pub><pmid>35898613</pmid><doi>10.1016/j.mex.2022.101784</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2488-5988</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2215-0161 |
ispartof | MethodsX, 2022-01, Vol.9, p.101784-101784, Article 101784 |
issn | 2215-0161 2215-0161 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_09630fa01cca4b0c866ca08fb88a7cb0 |
source | Elsevier ScienceDirect Journals; PubMed Central |
subjects | Fourier Transform scanning tunneling microscopy Method Quantum materials characterization Quasiparticle interference imaging Sparse Sampling |
title | Adaptive sparse sampling for quasiparticle interference imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20sparse%20sampling%20for%20quasiparticle%20interference%20imaging&rft.jtitle=MethodsX&rft.au=Oppliger,%20Jens&rft.date=2022-01-01&rft.volume=9&rft.spage=101784&rft.epage=101784&rft.pages=101784-101784&rft.artnum=101784&rft.issn=2215-0161&rft.eissn=2215-0161&rft_id=info:doi/10.1016/j.mex.2022.101784&rft_dat=%3Cproquest_doaj_%3E2696011052%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-95c7fe50bd0ad659da6851f556710f80dfadf98592b78ed4be8f94ff1ff6f6e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2696011052&rft_id=info:pmid/35898613&rfr_iscdi=true |