Loading…
Rare and Critical Metals in Pyrite, Chalcopyrite, Magnetite, and Titanite from the Vathi Porphyry Cu-Au±Mo Deposit, Northern Greece
The Vathi porphyry Cu-Au±Mo deposit is located in the Kilkis ore district, northern Greece. Hydrothermally altered and mineralized samples of latite and quartz monzonite are enriched with numerous rare and critical metals. The present study focuses on the bulk geochemistry and the mineral chemistry...
Saved in:
Published in: | Minerals (Basel) 2021-06, Vol.11 (6), p.630 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a387t-78aad5026d74e6b5bd2126d02a4395fae05e7f252a9052df1c3ecfce30dce4883 |
---|---|
cites | cdi_FETCH-LOGICAL-a387t-78aad5026d74e6b5bd2126d02a4395fae05e7f252a9052df1c3ecfce30dce4883 |
container_end_page | |
container_issue | 6 |
container_start_page | 630 |
container_title | Minerals (Basel) |
container_volume | 11 |
creator | Stergiou, Christos L. Melfos, Vasilios Voudouris, Panagiotis Papadopoulou, Lambrini Spry, Paul G. Peytcheva, Irena Dimitrova, Dimitrina Stefanova, Elitsa Giouri, Katerina |
description | The Vathi porphyry Cu-Au±Mo deposit is located in the Kilkis ore district, northern Greece. Hydrothermally altered and mineralized samples of latite and quartz monzonite are enriched with numerous rare and critical metals. The present study focuses on the bulk geochemistry and the mineral chemistry of pyrite, chalcopyrite, magnetite, and titanite. Pyrite and chalcopyrite are the most abundant ore minerals at Vathi and are related to potassic, propylitic, and sericitic hydrothermal alterations (A- and D-veins), as well as to the late-stage epithermal overprint (E-veins). Magnetite and titanite are found mainly in M-type veins and as disseminations in the potassic-calcic alteration of quartz monzonite. Disseminated magnetite is also present in the potassic alteration in latite, which is overprinted by sericitic alteration. Scanning electron microscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite and chalcopyrite reveal the presence of pyrrhotite, galena, and Bi-telluride inclusions in pyrite and enrichments of Ag, Co, Sb, Se, and Ti. Chalcopyrite hosts bornite, sphalerite, galena, and Bi-sulfosalt inclusions and is enriched with Ag, In, and Ti. Inclusions of wittichenite, tetradymite, and cuprobismutite reflect enrichments of Te and Bi in the mineralizing fluids. Native gold is related to A- and D-type veins and is found as nano-inclusions in pyrite. Titanite inclusions characterize magnetite, whereas titanite is a major host of Ce, Gd, La, Nd, Sm, Th, and W. |
doi_str_mv | 10.3390/min11060630 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_097b15b0251141cfad00b5a33dbe9a57</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_097b15b0251141cfad00b5a33dbe9a57</doaj_id><sourcerecordid>2544910782</sourcerecordid><originalsourceid>FETCH-LOGICAL-a387t-78aad5026d74e6b5bd2126d02a4395fae05e7f252a9052df1c3ecfce30dce4883</originalsourceid><addsrcrecordid>eNpNUU1PHDEMHVVUKqKc-gcicYQBJ5nMxxENsEViAVUUcYs8iYfNancyZLKHvfcP9S_0lxFYVOGL_azn9yw7y35wOJWygbO1GziHEkoJX7J9AZXKeSmf9j7V37LDaVpCiobLWon97M8vDMRwsKwNLjqDKzaniKuJuYHdb1OPTli7wJXx4wea4_NA8b18m3twEYeEWB_8msUFsUeMC8fufRgX27Bl7SY_3_z7O_fsgkY_uXjCbn1IxDCwWSAy9D372idLOvzIB9nvq8uH9md-cze7bs9vcpR1FfOqRrQKRGmrgspOdVbwBEBgIRvVI4GiqhdKYANK2J4bSaY3JMEaKupaHmTXO13rcanH4NYYttqj0-8NH541hnSEFWloqo6rDoTivOCmRwvQKZTSdtSgqpLW0U5rDP5lQ1PUS78JQ1pfC1UUDYeqFol1vGOZ4KcpUP_flYN--5r-9DX5CvXBitI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544910782</pqid></control><display><type>article</type><title>Rare and Critical Metals in Pyrite, Chalcopyrite, Magnetite, and Titanite from the Vathi Porphyry Cu-Au±Mo Deposit, Northern Greece</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>ABI/INFORM global</source><creator>Stergiou, Christos L. ; Melfos, Vasilios ; Voudouris, Panagiotis ; Papadopoulou, Lambrini ; Spry, Paul G. ; Peytcheva, Irena ; Dimitrova, Dimitrina ; Stefanova, Elitsa ; Giouri, Katerina</creator><creatorcontrib>Stergiou, Christos L. ; Melfos, Vasilios ; Voudouris, Panagiotis ; Papadopoulou, Lambrini ; Spry, Paul G. ; Peytcheva, Irena ; Dimitrova, Dimitrina ; Stefanova, Elitsa ; Giouri, Katerina</creatorcontrib><description>The Vathi porphyry Cu-Au±Mo deposit is located in the Kilkis ore district, northern Greece. Hydrothermally altered and mineralized samples of latite and quartz monzonite are enriched with numerous rare and critical metals. The present study focuses on the bulk geochemistry and the mineral chemistry of pyrite, chalcopyrite, magnetite, and titanite. Pyrite and chalcopyrite are the most abundant ore minerals at Vathi and are related to potassic, propylitic, and sericitic hydrothermal alterations (A- and D-veins), as well as to the late-stage epithermal overprint (E-veins). Magnetite and titanite are found mainly in M-type veins and as disseminations in the potassic-calcic alteration of quartz monzonite. Disseminated magnetite is also present in the potassic alteration in latite, which is overprinted by sericitic alteration. Scanning electron microscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite and chalcopyrite reveal the presence of pyrrhotite, galena, and Bi-telluride inclusions in pyrite and enrichments of Ag, Co, Sb, Se, and Ti. Chalcopyrite hosts bornite, sphalerite, galena, and Bi-sulfosalt inclusions and is enriched with Ag, In, and Ti. Inclusions of wittichenite, tetradymite, and cuprobismutite reflect enrichments of Te and Bi in the mineralizing fluids. Native gold is related to A- and D-type veins and is found as nano-inclusions in pyrite. Titanite inclusions characterize magnetite, whereas titanite is a major host of Ce, Gd, La, Nd, Sm, Th, and W.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min11060630</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ablation ; Alliances ; Antimony ; Bismuth ; Bornite ; Chalcopyrite ; Cobalt ; Copper ; critical metals ; Electron microscopy ; Enrichment ; Fault lines ; Fluids ; Gadolinium ; Galena ; Geochemistry ; Gold ; Heavy metals ; Igneous rocks ; Inclusions ; Inductively coupled plasma mass spectrometry ; Laser ablation ; Lasers ; Magnetite ; Mass spectrometry ; Mass spectroscopy ; Metals ; Mineralization ; Minerals ; Molybdenum ; Porphyry copper ; porphyry deposit ; Pyrite ; Pyrrhotite ; Quartz ; rare metals ; rare-earth elements ; Scanning electron microscopy ; Serbo-Macedonian metallogenic province ; Silver ; Space debris ; Sphalerite ; Tellurides ; Titanite ; Titanium ; Trace elements ; Vathi ; Veins (geology) ; Zincblende</subject><ispartof>Minerals (Basel), 2021-06, Vol.11 (6), p.630</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a387t-78aad5026d74e6b5bd2126d02a4395fae05e7f252a9052df1c3ecfce30dce4883</citedby><cites>FETCH-LOGICAL-a387t-78aad5026d74e6b5bd2126d02a4395fae05e7f252a9052df1c3ecfce30dce4883</cites><orcidid>0000-0002-2887-424X ; 0000-0002-4643-9364 ; 0000-0001-6489-4152 ; 0000-0003-2969-7262 ; 0000-0002-3544-458X ; 0000-0002-7541-9397 ; 0000-0001-8008-394X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2544910782/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2544910782?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,27924,27925,36060,37012,44363,44590,74895,75126</link.rule.ids></links><search><creatorcontrib>Stergiou, Christos L.</creatorcontrib><creatorcontrib>Melfos, Vasilios</creatorcontrib><creatorcontrib>Voudouris, Panagiotis</creatorcontrib><creatorcontrib>Papadopoulou, Lambrini</creatorcontrib><creatorcontrib>Spry, Paul G.</creatorcontrib><creatorcontrib>Peytcheva, Irena</creatorcontrib><creatorcontrib>Dimitrova, Dimitrina</creatorcontrib><creatorcontrib>Stefanova, Elitsa</creatorcontrib><creatorcontrib>Giouri, Katerina</creatorcontrib><title>Rare and Critical Metals in Pyrite, Chalcopyrite, Magnetite, and Titanite from the Vathi Porphyry Cu-Au±Mo Deposit, Northern Greece</title><title>Minerals (Basel)</title><description>The Vathi porphyry Cu-Au±Mo deposit is located in the Kilkis ore district, northern Greece. Hydrothermally altered and mineralized samples of latite and quartz monzonite are enriched with numerous rare and critical metals. The present study focuses on the bulk geochemistry and the mineral chemistry of pyrite, chalcopyrite, magnetite, and titanite. Pyrite and chalcopyrite are the most abundant ore minerals at Vathi and are related to potassic, propylitic, and sericitic hydrothermal alterations (A- and D-veins), as well as to the late-stage epithermal overprint (E-veins). Magnetite and titanite are found mainly in M-type veins and as disseminations in the potassic-calcic alteration of quartz monzonite. Disseminated magnetite is also present in the potassic alteration in latite, which is overprinted by sericitic alteration. Scanning electron microscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite and chalcopyrite reveal the presence of pyrrhotite, galena, and Bi-telluride inclusions in pyrite and enrichments of Ag, Co, Sb, Se, and Ti. Chalcopyrite hosts bornite, sphalerite, galena, and Bi-sulfosalt inclusions and is enriched with Ag, In, and Ti. Inclusions of wittichenite, tetradymite, and cuprobismutite reflect enrichments of Te and Bi in the mineralizing fluids. Native gold is related to A- and D-type veins and is found as nano-inclusions in pyrite. Titanite inclusions characterize magnetite, whereas titanite is a major host of Ce, Gd, La, Nd, Sm, Th, and W.</description><subject>Ablation</subject><subject>Alliances</subject><subject>Antimony</subject><subject>Bismuth</subject><subject>Bornite</subject><subject>Chalcopyrite</subject><subject>Cobalt</subject><subject>Copper</subject><subject>critical metals</subject><subject>Electron microscopy</subject><subject>Enrichment</subject><subject>Fault lines</subject><subject>Fluids</subject><subject>Gadolinium</subject><subject>Galena</subject><subject>Geochemistry</subject><subject>Gold</subject><subject>Heavy metals</subject><subject>Igneous rocks</subject><subject>Inclusions</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Laser ablation</subject><subject>Lasers</subject><subject>Magnetite</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metals</subject><subject>Mineralization</subject><subject>Minerals</subject><subject>Molybdenum</subject><subject>Porphyry copper</subject><subject>porphyry deposit</subject><subject>Pyrite</subject><subject>Pyrrhotite</subject><subject>Quartz</subject><subject>rare metals</subject><subject>rare-earth elements</subject><subject>Scanning electron microscopy</subject><subject>Serbo-Macedonian metallogenic province</subject><subject>Silver</subject><subject>Space debris</subject><subject>Sphalerite</subject><subject>Tellurides</subject><subject>Titanite</subject><subject>Titanium</subject><subject>Trace elements</subject><subject>Vathi</subject><subject>Veins (geology)</subject><subject>Zincblende</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PHDEMHVVUKqKc-gcicYQBJ5nMxxENsEViAVUUcYs8iYfNancyZLKHvfcP9S_0lxFYVOGL_azn9yw7y35wOJWygbO1GziHEkoJX7J9AZXKeSmf9j7V37LDaVpCiobLWon97M8vDMRwsKwNLjqDKzaniKuJuYHdb1OPTli7wJXx4wea4_NA8b18m3twEYeEWB_8msUFsUeMC8fufRgX27Bl7SY_3_z7O_fsgkY_uXjCbn1IxDCwWSAy9D372idLOvzIB9nvq8uH9md-cze7bs9vcpR1FfOqRrQKRGmrgspOdVbwBEBgIRvVI4GiqhdKYANK2J4bSaY3JMEaKupaHmTXO13rcanH4NYYttqj0-8NH541hnSEFWloqo6rDoTivOCmRwvQKZTSdtSgqpLW0U5rDP5lQ1PUS78JQ1pfC1UUDYeqFol1vGOZ4KcpUP_flYN--5r-9DX5CvXBitI</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Stergiou, Christos L.</creator><creator>Melfos, Vasilios</creator><creator>Voudouris, Panagiotis</creator><creator>Papadopoulou, Lambrini</creator><creator>Spry, Paul G.</creator><creator>Peytcheva, Irena</creator><creator>Dimitrova, Dimitrina</creator><creator>Stefanova, Elitsa</creator><creator>Giouri, Katerina</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2887-424X</orcidid><orcidid>https://orcid.org/0000-0002-4643-9364</orcidid><orcidid>https://orcid.org/0000-0001-6489-4152</orcidid><orcidid>https://orcid.org/0000-0003-2969-7262</orcidid><orcidid>https://orcid.org/0000-0002-3544-458X</orcidid><orcidid>https://orcid.org/0000-0002-7541-9397</orcidid><orcidid>https://orcid.org/0000-0001-8008-394X</orcidid></search><sort><creationdate>20210601</creationdate><title>Rare and Critical Metals in Pyrite, Chalcopyrite, Magnetite, and Titanite from the Vathi Porphyry Cu-Au±Mo Deposit, Northern Greece</title><author>Stergiou, Christos L. ; Melfos, Vasilios ; Voudouris, Panagiotis ; Papadopoulou, Lambrini ; Spry, Paul G. ; Peytcheva, Irena ; Dimitrova, Dimitrina ; Stefanova, Elitsa ; Giouri, Katerina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a387t-78aad5026d74e6b5bd2126d02a4395fae05e7f252a9052df1c3ecfce30dce4883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Alliances</topic><topic>Antimony</topic><topic>Bismuth</topic><topic>Bornite</topic><topic>Chalcopyrite</topic><topic>Cobalt</topic><topic>Copper</topic><topic>critical metals</topic><topic>Electron microscopy</topic><topic>Enrichment</topic><topic>Fault lines</topic><topic>Fluids</topic><topic>Gadolinium</topic><topic>Galena</topic><topic>Geochemistry</topic><topic>Gold</topic><topic>Heavy metals</topic><topic>Igneous rocks</topic><topic>Inclusions</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Laser ablation</topic><topic>Lasers</topic><topic>Magnetite</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metals</topic><topic>Mineralization</topic><topic>Minerals</topic><topic>Molybdenum</topic><topic>Porphyry copper</topic><topic>porphyry deposit</topic><topic>Pyrite</topic><topic>Pyrrhotite</topic><topic>Quartz</topic><topic>rare metals</topic><topic>rare-earth elements</topic><topic>Scanning electron microscopy</topic><topic>Serbo-Macedonian metallogenic province</topic><topic>Silver</topic><topic>Space debris</topic><topic>Sphalerite</topic><topic>Tellurides</topic><topic>Titanite</topic><topic>Titanium</topic><topic>Trace elements</topic><topic>Vathi</topic><topic>Veins (geology)</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stergiou, Christos L.</creatorcontrib><creatorcontrib>Melfos, Vasilios</creatorcontrib><creatorcontrib>Voudouris, Panagiotis</creatorcontrib><creatorcontrib>Papadopoulou, Lambrini</creatorcontrib><creatorcontrib>Spry, Paul G.</creatorcontrib><creatorcontrib>Peytcheva, Irena</creatorcontrib><creatorcontrib>Dimitrova, Dimitrina</creatorcontrib><creatorcontrib>Stefanova, Elitsa</creatorcontrib><creatorcontrib>Giouri, Katerina</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM global</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stergiou, Christos L.</au><au>Melfos, Vasilios</au><au>Voudouris, Panagiotis</au><au>Papadopoulou, Lambrini</au><au>Spry, Paul G.</au><au>Peytcheva, Irena</au><au>Dimitrova, Dimitrina</au><au>Stefanova, Elitsa</au><au>Giouri, Katerina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rare and Critical Metals in Pyrite, Chalcopyrite, Magnetite, and Titanite from the Vathi Porphyry Cu-Au±Mo Deposit, Northern Greece</atitle><jtitle>Minerals (Basel)</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>630</spage><pages>630-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>The Vathi porphyry Cu-Au±Mo deposit is located in the Kilkis ore district, northern Greece. Hydrothermally altered and mineralized samples of latite and quartz monzonite are enriched with numerous rare and critical metals. The present study focuses on the bulk geochemistry and the mineral chemistry of pyrite, chalcopyrite, magnetite, and titanite. Pyrite and chalcopyrite are the most abundant ore minerals at Vathi and are related to potassic, propylitic, and sericitic hydrothermal alterations (A- and D-veins), as well as to the late-stage epithermal overprint (E-veins). Magnetite and titanite are found mainly in M-type veins and as disseminations in the potassic-calcic alteration of quartz monzonite. Disseminated magnetite is also present in the potassic alteration in latite, which is overprinted by sericitic alteration. Scanning electron microscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite and chalcopyrite reveal the presence of pyrrhotite, galena, and Bi-telluride inclusions in pyrite and enrichments of Ag, Co, Sb, Se, and Ti. Chalcopyrite hosts bornite, sphalerite, galena, and Bi-sulfosalt inclusions and is enriched with Ag, In, and Ti. Inclusions of wittichenite, tetradymite, and cuprobismutite reflect enrichments of Te and Bi in the mineralizing fluids. Native gold is related to A- and D-type veins and is found as nano-inclusions in pyrite. Titanite inclusions characterize magnetite, whereas titanite is a major host of Ce, Gd, La, Nd, Sm, Th, and W.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min11060630</doi><orcidid>https://orcid.org/0000-0002-2887-424X</orcidid><orcidid>https://orcid.org/0000-0002-4643-9364</orcidid><orcidid>https://orcid.org/0000-0001-6489-4152</orcidid><orcidid>https://orcid.org/0000-0003-2969-7262</orcidid><orcidid>https://orcid.org/0000-0002-3544-458X</orcidid><orcidid>https://orcid.org/0000-0002-7541-9397</orcidid><orcidid>https://orcid.org/0000-0001-8008-394X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-163X |
ispartof | Minerals (Basel), 2021-06, Vol.11 (6), p.630 |
issn | 2075-163X 2075-163X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_097b15b0251141cfad00b5a33dbe9a57 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); ABI/INFORM global |
subjects | Ablation Alliances Antimony Bismuth Bornite Chalcopyrite Cobalt Copper critical metals Electron microscopy Enrichment Fault lines Fluids Gadolinium Galena Geochemistry Gold Heavy metals Igneous rocks Inclusions Inductively coupled plasma mass spectrometry Laser ablation Lasers Magnetite Mass spectrometry Mass spectroscopy Metals Mineralization Minerals Molybdenum Porphyry copper porphyry deposit Pyrite Pyrrhotite Quartz rare metals rare-earth elements Scanning electron microscopy Serbo-Macedonian metallogenic province Silver Space debris Sphalerite Tellurides Titanite Titanium Trace elements Vathi Veins (geology) Zincblende |
title | Rare and Critical Metals in Pyrite, Chalcopyrite, Magnetite, and Titanite from the Vathi Porphyry Cu-Au±Mo Deposit, Northern Greece |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rare%20and%20Critical%20Metals%20in%20Pyrite,%20Chalcopyrite,%20Magnetite,%20and%20Titanite%20from%20the%20Vathi%20Porphyry%20Cu-Au%C2%B1Mo%20Deposit,%20Northern%20Greece&rft.jtitle=Minerals%20(Basel)&rft.au=Stergiou,%20Christos%20L.&rft.date=2021-06-01&rft.volume=11&rft.issue=6&rft.spage=630&rft.pages=630-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min11060630&rft_dat=%3Cproquest_doaj_%3E2544910782%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a387t-78aad5026d74e6b5bd2126d02a4395fae05e7f252a9052df1c3ecfce30dce4883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544910782&rft_id=info:pmid/&rfr_iscdi=true |