Loading…

Rare and Critical Metals in Pyrite, Chalcopyrite, Magnetite, and Titanite from the Vathi Porphyry Cu-Au±Mo Deposit, Northern Greece

The Vathi porphyry Cu-Au±Mo deposit is located in the Kilkis ore district, northern Greece. Hydrothermally altered and mineralized samples of latite and quartz monzonite are enriched with numerous rare and critical metals. The present study focuses on the bulk geochemistry and the mineral chemistry...

Full description

Saved in:
Bibliographic Details
Published in:Minerals (Basel) 2021-06, Vol.11 (6), p.630
Main Authors: Stergiou, Christos L., Melfos, Vasilios, Voudouris, Panagiotis, Papadopoulou, Lambrini, Spry, Paul G., Peytcheva, Irena, Dimitrova, Dimitrina, Stefanova, Elitsa, Giouri, Katerina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a387t-78aad5026d74e6b5bd2126d02a4395fae05e7f252a9052df1c3ecfce30dce4883
cites cdi_FETCH-LOGICAL-a387t-78aad5026d74e6b5bd2126d02a4395fae05e7f252a9052df1c3ecfce30dce4883
container_end_page
container_issue 6
container_start_page 630
container_title Minerals (Basel)
container_volume 11
creator Stergiou, Christos L.
Melfos, Vasilios
Voudouris, Panagiotis
Papadopoulou, Lambrini
Spry, Paul G.
Peytcheva, Irena
Dimitrova, Dimitrina
Stefanova, Elitsa
Giouri, Katerina
description The Vathi porphyry Cu-Au±Mo deposit is located in the Kilkis ore district, northern Greece. Hydrothermally altered and mineralized samples of latite and quartz monzonite are enriched with numerous rare and critical metals. The present study focuses on the bulk geochemistry and the mineral chemistry of pyrite, chalcopyrite, magnetite, and titanite. Pyrite and chalcopyrite are the most abundant ore minerals at Vathi and are related to potassic, propylitic, and sericitic hydrothermal alterations (A- and D-veins), as well as to the late-stage epithermal overprint (E-veins). Magnetite and titanite are found mainly in M-type veins and as disseminations in the potassic-calcic alteration of quartz monzonite. Disseminated magnetite is also present in the potassic alteration in latite, which is overprinted by sericitic alteration. Scanning electron microscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite and chalcopyrite reveal the presence of pyrrhotite, galena, and Bi-telluride inclusions in pyrite and enrichments of Ag, Co, Sb, Se, and Ti. Chalcopyrite hosts bornite, sphalerite, galena, and Bi-sulfosalt inclusions and is enriched with Ag, In, and Ti. Inclusions of wittichenite, tetradymite, and cuprobismutite reflect enrichments of Te and Bi in the mineralizing fluids. Native gold is related to A- and D-type veins and is found as nano-inclusions in pyrite. Titanite inclusions characterize magnetite, whereas titanite is a major host of Ce, Gd, La, Nd, Sm, Th, and W.
doi_str_mv 10.3390/min11060630
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_097b15b0251141cfad00b5a33dbe9a57</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_097b15b0251141cfad00b5a33dbe9a57</doaj_id><sourcerecordid>2544910782</sourcerecordid><originalsourceid>FETCH-LOGICAL-a387t-78aad5026d74e6b5bd2126d02a4395fae05e7f252a9052df1c3ecfce30dce4883</originalsourceid><addsrcrecordid>eNpNUU1PHDEMHVVUKqKc-gcicYQBJ5nMxxENsEViAVUUcYs8iYfNancyZLKHvfcP9S_0lxFYVOGL_azn9yw7y35wOJWygbO1GziHEkoJX7J9AZXKeSmf9j7V37LDaVpCiobLWon97M8vDMRwsKwNLjqDKzaniKuJuYHdb1OPTli7wJXx4wea4_NA8b18m3twEYeEWB_8msUFsUeMC8fufRgX27Bl7SY_3_z7O_fsgkY_uXjCbn1IxDCwWSAy9D372idLOvzIB9nvq8uH9md-cze7bs9vcpR1FfOqRrQKRGmrgspOdVbwBEBgIRvVI4GiqhdKYANK2J4bSaY3JMEaKupaHmTXO13rcanH4NYYttqj0-8NH541hnSEFWloqo6rDoTivOCmRwvQKZTSdtSgqpLW0U5rDP5lQ1PUS78JQ1pfC1UUDYeqFol1vGOZ4KcpUP_flYN--5r-9DX5CvXBitI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544910782</pqid></control><display><type>article</type><title>Rare and Critical Metals in Pyrite, Chalcopyrite, Magnetite, and Titanite from the Vathi Porphyry Cu-Au±Mo Deposit, Northern Greece</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>ABI/INFORM global</source><creator>Stergiou, Christos L. ; Melfos, Vasilios ; Voudouris, Panagiotis ; Papadopoulou, Lambrini ; Spry, Paul G. ; Peytcheva, Irena ; Dimitrova, Dimitrina ; Stefanova, Elitsa ; Giouri, Katerina</creator><creatorcontrib>Stergiou, Christos L. ; Melfos, Vasilios ; Voudouris, Panagiotis ; Papadopoulou, Lambrini ; Spry, Paul G. ; Peytcheva, Irena ; Dimitrova, Dimitrina ; Stefanova, Elitsa ; Giouri, Katerina</creatorcontrib><description>The Vathi porphyry Cu-Au±Mo deposit is located in the Kilkis ore district, northern Greece. Hydrothermally altered and mineralized samples of latite and quartz monzonite are enriched with numerous rare and critical metals. The present study focuses on the bulk geochemistry and the mineral chemistry of pyrite, chalcopyrite, magnetite, and titanite. Pyrite and chalcopyrite are the most abundant ore minerals at Vathi and are related to potassic, propylitic, and sericitic hydrothermal alterations (A- and D-veins), as well as to the late-stage epithermal overprint (E-veins). Magnetite and titanite are found mainly in M-type veins and as disseminations in the potassic-calcic alteration of quartz monzonite. Disseminated magnetite is also present in the potassic alteration in latite, which is overprinted by sericitic alteration. Scanning electron microscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite and chalcopyrite reveal the presence of pyrrhotite, galena, and Bi-telluride inclusions in pyrite and enrichments of Ag, Co, Sb, Se, and Ti. Chalcopyrite hosts bornite, sphalerite, galena, and Bi-sulfosalt inclusions and is enriched with Ag, In, and Ti. Inclusions of wittichenite, tetradymite, and cuprobismutite reflect enrichments of Te and Bi in the mineralizing fluids. Native gold is related to A- and D-type veins and is found as nano-inclusions in pyrite. Titanite inclusions characterize magnetite, whereas titanite is a major host of Ce, Gd, La, Nd, Sm, Th, and W.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min11060630</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ablation ; Alliances ; Antimony ; Bismuth ; Bornite ; Chalcopyrite ; Cobalt ; Copper ; critical metals ; Electron microscopy ; Enrichment ; Fault lines ; Fluids ; Gadolinium ; Galena ; Geochemistry ; Gold ; Heavy metals ; Igneous rocks ; Inclusions ; Inductively coupled plasma mass spectrometry ; Laser ablation ; Lasers ; Magnetite ; Mass spectrometry ; Mass spectroscopy ; Metals ; Mineralization ; Minerals ; Molybdenum ; Porphyry copper ; porphyry deposit ; Pyrite ; Pyrrhotite ; Quartz ; rare metals ; rare-earth elements ; Scanning electron microscopy ; Serbo-Macedonian metallogenic province ; Silver ; Space debris ; Sphalerite ; Tellurides ; Titanite ; Titanium ; Trace elements ; Vathi ; Veins (geology) ; Zincblende</subject><ispartof>Minerals (Basel), 2021-06, Vol.11 (6), p.630</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a387t-78aad5026d74e6b5bd2126d02a4395fae05e7f252a9052df1c3ecfce30dce4883</citedby><cites>FETCH-LOGICAL-a387t-78aad5026d74e6b5bd2126d02a4395fae05e7f252a9052df1c3ecfce30dce4883</cites><orcidid>0000-0002-2887-424X ; 0000-0002-4643-9364 ; 0000-0001-6489-4152 ; 0000-0003-2969-7262 ; 0000-0002-3544-458X ; 0000-0002-7541-9397 ; 0000-0001-8008-394X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2544910782/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2544910782?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,27924,27925,36060,37012,44363,44590,74895,75126</link.rule.ids></links><search><creatorcontrib>Stergiou, Christos L.</creatorcontrib><creatorcontrib>Melfos, Vasilios</creatorcontrib><creatorcontrib>Voudouris, Panagiotis</creatorcontrib><creatorcontrib>Papadopoulou, Lambrini</creatorcontrib><creatorcontrib>Spry, Paul G.</creatorcontrib><creatorcontrib>Peytcheva, Irena</creatorcontrib><creatorcontrib>Dimitrova, Dimitrina</creatorcontrib><creatorcontrib>Stefanova, Elitsa</creatorcontrib><creatorcontrib>Giouri, Katerina</creatorcontrib><title>Rare and Critical Metals in Pyrite, Chalcopyrite, Magnetite, and Titanite from the Vathi Porphyry Cu-Au±Mo Deposit, Northern Greece</title><title>Minerals (Basel)</title><description>The Vathi porphyry Cu-Au±Mo deposit is located in the Kilkis ore district, northern Greece. Hydrothermally altered and mineralized samples of latite and quartz monzonite are enriched with numerous rare and critical metals. The present study focuses on the bulk geochemistry and the mineral chemistry of pyrite, chalcopyrite, magnetite, and titanite. Pyrite and chalcopyrite are the most abundant ore minerals at Vathi and are related to potassic, propylitic, and sericitic hydrothermal alterations (A- and D-veins), as well as to the late-stage epithermal overprint (E-veins). Magnetite and titanite are found mainly in M-type veins and as disseminations in the potassic-calcic alteration of quartz monzonite. Disseminated magnetite is also present in the potassic alteration in latite, which is overprinted by sericitic alteration. Scanning electron microscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite and chalcopyrite reveal the presence of pyrrhotite, galena, and Bi-telluride inclusions in pyrite and enrichments of Ag, Co, Sb, Se, and Ti. Chalcopyrite hosts bornite, sphalerite, galena, and Bi-sulfosalt inclusions and is enriched with Ag, In, and Ti. Inclusions of wittichenite, tetradymite, and cuprobismutite reflect enrichments of Te and Bi in the mineralizing fluids. Native gold is related to A- and D-type veins and is found as nano-inclusions in pyrite. Titanite inclusions characterize magnetite, whereas titanite is a major host of Ce, Gd, La, Nd, Sm, Th, and W.</description><subject>Ablation</subject><subject>Alliances</subject><subject>Antimony</subject><subject>Bismuth</subject><subject>Bornite</subject><subject>Chalcopyrite</subject><subject>Cobalt</subject><subject>Copper</subject><subject>critical metals</subject><subject>Electron microscopy</subject><subject>Enrichment</subject><subject>Fault lines</subject><subject>Fluids</subject><subject>Gadolinium</subject><subject>Galena</subject><subject>Geochemistry</subject><subject>Gold</subject><subject>Heavy metals</subject><subject>Igneous rocks</subject><subject>Inclusions</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Laser ablation</subject><subject>Lasers</subject><subject>Magnetite</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metals</subject><subject>Mineralization</subject><subject>Minerals</subject><subject>Molybdenum</subject><subject>Porphyry copper</subject><subject>porphyry deposit</subject><subject>Pyrite</subject><subject>Pyrrhotite</subject><subject>Quartz</subject><subject>rare metals</subject><subject>rare-earth elements</subject><subject>Scanning electron microscopy</subject><subject>Serbo-Macedonian metallogenic province</subject><subject>Silver</subject><subject>Space debris</subject><subject>Sphalerite</subject><subject>Tellurides</subject><subject>Titanite</subject><subject>Titanium</subject><subject>Trace elements</subject><subject>Vathi</subject><subject>Veins (geology)</subject><subject>Zincblende</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PHDEMHVVUKqKc-gcicYQBJ5nMxxENsEViAVUUcYs8iYfNancyZLKHvfcP9S_0lxFYVOGL_azn9yw7y35wOJWygbO1GziHEkoJX7J9AZXKeSmf9j7V37LDaVpCiobLWon97M8vDMRwsKwNLjqDKzaniKuJuYHdb1OPTli7wJXx4wea4_NA8b18m3twEYeEWB_8msUFsUeMC8fufRgX27Bl7SY_3_z7O_fsgkY_uXjCbn1IxDCwWSAy9D372idLOvzIB9nvq8uH9md-cze7bs9vcpR1FfOqRrQKRGmrgspOdVbwBEBgIRvVI4GiqhdKYANK2J4bSaY3JMEaKupaHmTXO13rcanH4NYYttqj0-8NH541hnSEFWloqo6rDoTivOCmRwvQKZTSdtSgqpLW0U5rDP5lQ1PUS78JQ1pfC1UUDYeqFol1vGOZ4KcpUP_flYN--5r-9DX5CvXBitI</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Stergiou, Christos L.</creator><creator>Melfos, Vasilios</creator><creator>Voudouris, Panagiotis</creator><creator>Papadopoulou, Lambrini</creator><creator>Spry, Paul G.</creator><creator>Peytcheva, Irena</creator><creator>Dimitrova, Dimitrina</creator><creator>Stefanova, Elitsa</creator><creator>Giouri, Katerina</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2887-424X</orcidid><orcidid>https://orcid.org/0000-0002-4643-9364</orcidid><orcidid>https://orcid.org/0000-0001-6489-4152</orcidid><orcidid>https://orcid.org/0000-0003-2969-7262</orcidid><orcidid>https://orcid.org/0000-0002-3544-458X</orcidid><orcidid>https://orcid.org/0000-0002-7541-9397</orcidid><orcidid>https://orcid.org/0000-0001-8008-394X</orcidid></search><sort><creationdate>20210601</creationdate><title>Rare and Critical Metals in Pyrite, Chalcopyrite, Magnetite, and Titanite from the Vathi Porphyry Cu-Au±Mo Deposit, Northern Greece</title><author>Stergiou, Christos L. ; Melfos, Vasilios ; Voudouris, Panagiotis ; Papadopoulou, Lambrini ; Spry, Paul G. ; Peytcheva, Irena ; Dimitrova, Dimitrina ; Stefanova, Elitsa ; Giouri, Katerina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a387t-78aad5026d74e6b5bd2126d02a4395fae05e7f252a9052df1c3ecfce30dce4883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Alliances</topic><topic>Antimony</topic><topic>Bismuth</topic><topic>Bornite</topic><topic>Chalcopyrite</topic><topic>Cobalt</topic><topic>Copper</topic><topic>critical metals</topic><topic>Electron microscopy</topic><topic>Enrichment</topic><topic>Fault lines</topic><topic>Fluids</topic><topic>Gadolinium</topic><topic>Galena</topic><topic>Geochemistry</topic><topic>Gold</topic><topic>Heavy metals</topic><topic>Igneous rocks</topic><topic>Inclusions</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Laser ablation</topic><topic>Lasers</topic><topic>Magnetite</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metals</topic><topic>Mineralization</topic><topic>Minerals</topic><topic>Molybdenum</topic><topic>Porphyry copper</topic><topic>porphyry deposit</topic><topic>Pyrite</topic><topic>Pyrrhotite</topic><topic>Quartz</topic><topic>rare metals</topic><topic>rare-earth elements</topic><topic>Scanning electron microscopy</topic><topic>Serbo-Macedonian metallogenic province</topic><topic>Silver</topic><topic>Space debris</topic><topic>Sphalerite</topic><topic>Tellurides</topic><topic>Titanite</topic><topic>Titanium</topic><topic>Trace elements</topic><topic>Vathi</topic><topic>Veins (geology)</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stergiou, Christos L.</creatorcontrib><creatorcontrib>Melfos, Vasilios</creatorcontrib><creatorcontrib>Voudouris, Panagiotis</creatorcontrib><creatorcontrib>Papadopoulou, Lambrini</creatorcontrib><creatorcontrib>Spry, Paul G.</creatorcontrib><creatorcontrib>Peytcheva, Irena</creatorcontrib><creatorcontrib>Dimitrova, Dimitrina</creatorcontrib><creatorcontrib>Stefanova, Elitsa</creatorcontrib><creatorcontrib>Giouri, Katerina</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM global</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stergiou, Christos L.</au><au>Melfos, Vasilios</au><au>Voudouris, Panagiotis</au><au>Papadopoulou, Lambrini</au><au>Spry, Paul G.</au><au>Peytcheva, Irena</au><au>Dimitrova, Dimitrina</au><au>Stefanova, Elitsa</au><au>Giouri, Katerina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rare and Critical Metals in Pyrite, Chalcopyrite, Magnetite, and Titanite from the Vathi Porphyry Cu-Au±Mo Deposit, Northern Greece</atitle><jtitle>Minerals (Basel)</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>630</spage><pages>630-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>The Vathi porphyry Cu-Au±Mo deposit is located in the Kilkis ore district, northern Greece. Hydrothermally altered and mineralized samples of latite and quartz monzonite are enriched with numerous rare and critical metals. The present study focuses on the bulk geochemistry and the mineral chemistry of pyrite, chalcopyrite, magnetite, and titanite. Pyrite and chalcopyrite are the most abundant ore minerals at Vathi and are related to potassic, propylitic, and sericitic hydrothermal alterations (A- and D-veins), as well as to the late-stage epithermal overprint (E-veins). Magnetite and titanite are found mainly in M-type veins and as disseminations in the potassic-calcic alteration of quartz monzonite. Disseminated magnetite is also present in the potassic alteration in latite, which is overprinted by sericitic alteration. Scanning electron microscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite and chalcopyrite reveal the presence of pyrrhotite, galena, and Bi-telluride inclusions in pyrite and enrichments of Ag, Co, Sb, Se, and Ti. Chalcopyrite hosts bornite, sphalerite, galena, and Bi-sulfosalt inclusions and is enriched with Ag, In, and Ti. Inclusions of wittichenite, tetradymite, and cuprobismutite reflect enrichments of Te and Bi in the mineralizing fluids. Native gold is related to A- and D-type veins and is found as nano-inclusions in pyrite. Titanite inclusions characterize magnetite, whereas titanite is a major host of Ce, Gd, La, Nd, Sm, Th, and W.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min11060630</doi><orcidid>https://orcid.org/0000-0002-2887-424X</orcidid><orcidid>https://orcid.org/0000-0002-4643-9364</orcidid><orcidid>https://orcid.org/0000-0001-6489-4152</orcidid><orcidid>https://orcid.org/0000-0003-2969-7262</orcidid><orcidid>https://orcid.org/0000-0002-3544-458X</orcidid><orcidid>https://orcid.org/0000-0002-7541-9397</orcidid><orcidid>https://orcid.org/0000-0001-8008-394X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-163X
ispartof Minerals (Basel), 2021-06, Vol.11 (6), p.630
issn 2075-163X
2075-163X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_097b15b0251141cfad00b5a33dbe9a57
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); ABI/INFORM global
subjects Ablation
Alliances
Antimony
Bismuth
Bornite
Chalcopyrite
Cobalt
Copper
critical metals
Electron microscopy
Enrichment
Fault lines
Fluids
Gadolinium
Galena
Geochemistry
Gold
Heavy metals
Igneous rocks
Inclusions
Inductively coupled plasma mass spectrometry
Laser ablation
Lasers
Magnetite
Mass spectrometry
Mass spectroscopy
Metals
Mineralization
Minerals
Molybdenum
Porphyry copper
porphyry deposit
Pyrite
Pyrrhotite
Quartz
rare metals
rare-earth elements
Scanning electron microscopy
Serbo-Macedonian metallogenic province
Silver
Space debris
Sphalerite
Tellurides
Titanite
Titanium
Trace elements
Vathi
Veins (geology)
Zincblende
title Rare and Critical Metals in Pyrite, Chalcopyrite, Magnetite, and Titanite from the Vathi Porphyry Cu-Au±Mo Deposit, Northern Greece
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rare%20and%20Critical%20Metals%20in%20Pyrite,%20Chalcopyrite,%20Magnetite,%20and%20Titanite%20from%20the%20Vathi%20Porphyry%20Cu-Au%C2%B1Mo%20Deposit,%20Northern%20Greece&rft.jtitle=Minerals%20(Basel)&rft.au=Stergiou,%20Christos%20L.&rft.date=2021-06-01&rft.volume=11&rft.issue=6&rft.spage=630&rft.pages=630-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min11060630&rft_dat=%3Cproquest_doaj_%3E2544910782%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a387t-78aad5026d74e6b5bd2126d02a4395fae05e7f252a9052df1c3ecfce30dce4883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544910782&rft_id=info:pmid/&rfr_iscdi=true