Loading…
Predictive performance of automated surveillance algorithms for intravascular catheter bloodstream infections: a systematic review and meta-analysis
Background Intravascular catheter infections are associated with adverse clinical outcomes. However, a significant proportion of these infections are preventable. Evaluations of the performance of automated surveillance systems for adequate monitoring of central-line associated bloodstream infection...
Saved in:
Published in: | Antimicrobial resistance & infection control 2023-08, Vol.12 (1), p.1-87, Article 87 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background Intravascular catheter infections are associated with adverse clinical outcomes. However, a significant proportion of these infections are preventable. Evaluations of the performance of automated surveillance systems for adequate monitoring of central-line associated bloodstream infection (CLABSI) or catheter-related bloodstream infection (CRBSI) are limited. Objectives We evaluated the predictive performance of automated algorithms for CLABSI/CRBSI detection, and investigated which parameters included in automated algorithms provide the greatest accuracy for CLABSI/CRBSI detection. Methods We performed a meta-analysis based on a systematic search of published studies in PubMed and EMBASE from 1 January 2000 to 31 December 2021. We included studies that evaluated predictive performance of automated surveillance algorithms for CLABSI/CRBSI detection and used manually collected surveillance data as reference. We estimated the pooled sensitivity and specificity of algorithms for accuracy and performed a univariable meta-regression of the different parameters used across algorithms. Results The search identified five full text studies and 32 different algorithms or study populations were included in the meta-analysis. All studies analysed central venous catheters and identified CLABSI or CRBSI as an outcome. Pooled sensitivity and specificity of automated surveillance algorithm were 0.88 [95%CI 0.84-0.91] and 0.86 [95%CI 0.79-0.92] with significant heterogeneity (I.sup.2 = 91.9, p < 0.001 and I.sup.2 = 99.2, p < 0.001, respectively). In meta-regression, algorithms that include results of microbiological cultures from specific specimens (respiratory, urine and wound) to exclude non-CRBSI had higher specificity estimates (0.92, 95%CI 0.88-0.96) than algorithms that include results of microbiological cultures from any other body sites (0.88, 95% CI 0.81-0.95). The addition of clinical signs as a predictor did not improve performance of these algorithms with similar specificity estimates (0.92, 95%CI 0.88-0.96). Conclusions Performance of automated algorithms for detection of intravascular catheter infections in comparison to manual surveillance seems encouraging. The development of automated algorithms should consider the inclusion of results of microbiological cultures from specific specimens to exclude non-CRBSI, while the inclusion of clinical data may not have an added-value. Trail Registration Prospectively registered with International prospectiv |
---|---|
ISSN: | 2047-2994 2047-2994 |
DOI: | 10.1186/s13756-023-01286-0 |